Automated Deduction and Algebra, Lecture |

AUTOMATED DEDUCTION AND ALGEBRA

Lecture |

Michael K. Kinyon

Department of Mathematics
.] UNIVERSITY OF
DENVER

University of Lisbon, 8 June 2009

Automated Deduction and Algebra, Lecture |

leroduction

Automated Theorem Provers

In these lectures, we will use Prover9, developed by William
McCune. There are other good provers available. They all have
advantages and disadvantages.

@ Waldmeister
e Equational reasoning only
e Can solve problems “out of the box” that Prover9 cannot
(and vice versa)
e Not hard to use (simple syntax), but not flexible in its
settings
@ Vampire, E, Equinox, Others
e Multipurpose, strong in many areas

e Can solve problems Prover9 cannot (and vice versa)
e Sometimes obscure syntax, tricky to use

Automated Deduction and Algebra, Lecture |

leroduction

Finite Model Builders

In these lectures, we will use Mace4, also developed by
McCune. There are not as many finite model builders as there
are provers, but here are a couple of them.

@ SEM
o Still used, but mostly obsolete
@ Paradox

e Powerful for logic problems, can find large models in that
setting
e For equational problems, no better than others

Automated Deduction and Algebra, Lecture |

leroduction

Where to get it

Prover9, Mace4 and supporting software can all be
downloaded from:

http://www.cs.unm.edu/~mccune/prover9/

There is a GUI (graphical user interface) version and a
command line version. We will mostly use the GUI here, but in
some ways, the command line version is more flexible.

http://www.cs.unm.edu/~mccune/prover9/

Automated Deduction and Algebra, Lecture |

LInput files

Assumptions and goals

The two main lists in a Prover9 (or Mace4) input file are the
assumptions list and the goals list. These are delimited by

formulas (assumptions) .
ér-u;l_of_list .

and

formulas (goals) .
ér-lc;l_of_list.

(All lists end with end_of_1ist.)

Automated Deduction and Algebra, Lecture |

LInput files

Connectives

The default basic logical connectives are:

— not
| or
& and
—> implies

<=> ifand only if
In equality problems, one can use != for “not equal”.
Thus “a != b” is the same as “-(a = b)”".

Automated Deduction and Algebra, Lecture |

LInput files

Formulas

An atomic formula is an n-ary predicate symbol applied to n
terms is an atomic formula.

For example, an equation is an atomic formula; equality is a
2-term predicate.

Formulas are defined recursively:

@ An atomic formula is a formula,

@ if F and G are formulas, then so are:

o if F is a formula and x is a variable, then these are
formulas:
all x F exists x F

Automated Deduction and Algebra, Lecture |

LInput files

Literals and Clauses

A literal is either an atomic formula or the negation of an atomic
formula.

A clause is a formula consisting of a disjunction of literals. All
variables in a clause are assumed to be universally quantified.

For instance, an equation, which is just an atomic formula, is a
clause:

x & (v * (xx (y » 2))) =x % (y * z).
Here is an example of a formula, which is not (yet) a clause:

all x all y exists z (x » z =y).

Automated Deduction and Algebra, Lecture |

LInput files

Periods

Warning: all input formulas must end with a period (a “full stop”
in British English).

(Don’t worry, you will forget this many times.)

Automated Deduction and Algebra, Lecture |

LInput files

Variables

Convention: Lower case letters at the end of the alphabet
X, Y, 2z, u, w, v, ve6, v7,

are variables.

The letter “v” may be used in input files, but will not be used in
output. This is because many people use it for the join
operation in lattice theory, and so wish to avoid expressions like
‘Yvv=vV"

Automated Deduction and Algebra, Lecture |

LInput files

Quantification

By default, variables are universally quantified if not otherwise
indicated.

So
X xy =Yy * X.
means the same thing as

all x all v (x x vy =Yy * X).

Automated Deduction and Algebra, Lecture |

LInput files

Constants

Lower case letters at the beginning of the alphabet and all
upper case letters are constants, unless explicitly quantified.

So in the clause

c is a constant that commutes with everything.
In the clause
all ¢ (¢ » x = x % Cc).

cis a variable, and we have asserted that * is a commutative
operation.

Automated Deduction and Algebra, Lecture |

L Preprocessing

Clausification

Prover9’s main inference process works with clauses only, not
with more general formula. Thus in preprocessing, Prover9
clausifies all formulas.

For example, the cancellation law

X % y = X % zZ —> y Z .
will be clausified like this:

X xy !'=x %z | yv=z.

Automated Deduction and Algebra, Lecture |

L Preprocessing

Clausifying connectives

During preprocessing, logical connectives are re-expressed in a
normal form.
For instance, negation is not allowed to be applied to a

disjunction or a conjunction. So
-(a & Db) iswrittenas -a | -b.

Automated Deduction and Algebra, Lecture |

L Preprocessing

Example

| have been working on a loop theory problem that has the
following nasty condition:

(x »y) * z=x*x (y » 2z2) & (x x z2) »y =X % (2 % V)
(x »y) * z =X+ (2 *Vy) & (x *2z2) xy=2xx*x (y*z) |
(x x y) » z = (x *x2z) ~y &x* (y*2z)=2xx (zx*xy).

Prover9 distributes “or” over “and” and clausifies this to eight

clauses
(X *»y) *z=x% (y*2z) | (x*y) xz=xx (z*y) | (X *y) z=(x%*2z) *y.
(x *y) 2z =%+ (y «2) | (x«y)*«z=xx(z+y) | x=* (y*z)==xx% (z+%y).

etc.

Automated Deduction and Algebra, Lecture |

L Preprocessing

Skolemization

If a formula contains an existence statement, Prover9 (and
Mace4) will skolemize it during clausification.

This means it replaces existence statements with functions.
For instance, the formula

all x all y exists z (X » 2z =y).

asserts that z is a function of x and y. So the formula is
skolemized to

x x T1(x,y) = vy.

(Skolem functions are numbered £1, £2, etc.)

Automated Deduction and Algebra, Lecture |

L Preprocessing

BENRIELS

Prover9 proves everything by contradiction. Thus it takes
whatever conjecture is in the goals list and forms its denial
using constants.

For instance, the goal

X Yy =Yy * X.
will be converted into the denial.
cl = c2 !'= c2 = cl.

Multiple goals are allowed, but as a rule of thumb: don't.

Automated Deduction and Algebra, Lecture |
LThe Main Loop

Key Ideas

There are three key ideas in Prover9’s inference process: the
given clause, the usable list and the sos (set of support) /ist.

The sos list is the list of clauses that are waiting to be selected
as given clauses. Clauses in the sos list are not available for
making primary inferences, but they can be used to simplify
inferred clauses by rewriting and unit deletion.

The usable list is the list of clauses that are available for making
inferences with the given clause

At each iteration of the loop, a given clause is selected from the
sos list, moved to the usable list, and then inferences are made
using the given clause and other clauses in the usable list.

Automated Deduction and Algebra, Lecture |
LThe Main Loop

Precise description

While the sos list is not empty:
@ Select a given clause from sos and move it to the usable
list
© Infer new clauses using the inference rules in effect; each

new clause must have the given clause as one of its
parents and members of the usable list as its other parents;

© process each new clause;

© append new clauses that pass the retention tests to the
sos list.

end of while loop.

Automated Deduction and Algebra, Lecture |

LInference Rules

Paramodulation

For equational problems, the most important inference rule is
paramodulation. This is equational manipulation at its most
basic, substitution of terms into equations.

To see how it works, let’s look at a small piece of a Prover9
proof:

23 (x 7 (ly " x) vaz)) (y x)=y x.

130 ((x ~y) ~ z) v x = X.

346 (x T y) T ((y T z) T x) = (y T z) © x.
[para(130(a,1),23(a,1,1,2))1].

(Let’s work this out on the board.)

Automated Deduction and Algebra, Lecture |

LInference Rules

Binary Resolution

The basic idea of resolution is that if one of the literals in a
disjunction is falsified, then the remaining literals are true. Here
is a simple example:

18 x » vy !'=z | z x y' = x.
20 ((x *x y) * z) »y =x % ((y * z) % y).
(x x ((y » z) » y)) »y" = (x *y) * z.

[resolve (18,a,20,a)].

(Let’s work this out on the board.)

Automated Deduction and Algebra, Lecture |

LInference Rules

Hyper-resolution

Hyper-resolution is an inference rule that allows multiple binary
resolutions all at once: Example:

2 -P(e(x,y)) | —-P(x) | P(y)

3 P(e(x,e (e(y,z)))).

5 P(e(e(x (e(y,z))),e(u,w)))
[hyper(2 a,3,a,b,3,a)]

(Let’s work this out on the board.)

Automated Deduction and Algebra, Lecture |

LInference Rules

Negative hyper-resolution

Negative hyper-resolution works “backwards”.

Example:

S5 x xy l!l=2zxvy | x=2z.

14 (cl = c2) * c3 != ¢cl = (c2 = c3).

((cl * c2) = c3) » x !'= (¢l * (c2 * c3)) * x.

[hyper (5,b,14,a)].

Automated Deduction and Algebra, Lecture |

LInference Rules

UR-Resolution

The UR-resolution (unit resolving) rule can be thought of as a
jazzed up version of hyper-resolution which mixes positive and
negative clauses. In problems with clauses with few literals, it
behaves much like hyper-resolution.

Negative UR-resolution is often turned on by default. It is
frequently desirable to turn it off as we will discuss later.

Automated Deduction and Algebra, Lecture |

LF{ewriting and Term Ordering

Rewriting

In equational problems, an important task of provers is rewriting
(or demodulation) by replacing terms by something “simpler”.
The definition of “simpler” depends on the choice of term
ordering.

For instance, say that Prover9 derives an equation such as

X *x (y * z) = X * zZ.

This will now play the role of a demodulator. Perhaps in the
sos, there is some equation like

..... = x *x (y x z).

Prover9 will immediately rewrite it as

using the demodulator.

Automated Deduction and Algebra, Lecture |

LF{ewriting and Term Ordering

Function order

During preprocessing, Prover9 finds all of the constants,
functions, operations, etc. in the input file and places them in a
certain order:

function_order([0,1,cl,c2,f,q9,%,/,\1).

Constants come first (including constants from denials),
followed by unary functions, binary functions, etc.

If the results of the default function_order are
unsatisfactory, the user has the option of specifying it.

Automated Deduction and Algebra, Lecture |

LF{ewriting and Term Ordering

Term ordering

Prover9 has two main term ordering options, which tell it how to
decide to rewrite terms:

LPO - lexicographic path ordering. This tells Prover9 to rewrite
terms by following function_order whenever possible.

KBO - Knuth-Bendix ordering. Roughly speaking, this tells
Prover9 to rewrite terms in the shortest way possible, using
function_order if there are multiple options.

LPO is the default, because in some problems, it is the faster
option.

Automated Deduction and Algebra, Lecture |

LF{ewriting and Term Ordering

Difficulties with LPO

LPO can sometimes cause terms to “blow up”. For instance,
suppose we have

function_order ([E, =, \]) .
and suppose that Prover9 derives the clause
x Ny =E * (x (E x y)).

LPO will cause Prover9 to rewrite all instances of in terms of
this new demodulator. This can significantly increase the sizes
of clauses.

Automated Deduction and Algebra, Lecture |

LF{ewriting and Term Ordering

Equational definitions

Say you have an equational definition, like this:
L(XIYIZ) = (X*Y) \ (X* (Y* Z))

By default, during preprocessing, Prover9 will expand all other
input instances of 1. (x, y, z) in terms of the other operations,
and it will never be seen again.

But sometimes you want Prover9 to keep the function and to
rewrite using the function whenever possible. In that case, you
can force Prover9 to move the definition up front in
function_order using this option:

set (eg_defs) .

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Simplification

After a clause is inferred, many things, happen to it. First, it is
simplified. Say that C is the newly inferred clause.
@ Rewrite C using all available demodulators.
@ Orient the equalities, heavy to light.
Forinstance, x » y = zisoriented, z = x % yisnot.

@ If C contains any identical literals, merge them.
For instance, the clause
X *xy =y *x x| X*y=y*xXx
will be mergedtojustx = v = y * x.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Simplification Il

@ Delete units in C.
For instance, suppose that after simplification, C contains
x !=x | x » y =y *= x. The obviously false literal
will be deleted, leaving just x « v = y » x.

@ CAC redundancy check: if there is a commutative or
commutative-associative operation, and if C contains an
equality which is a consequence of this property, then the
equality will be simplified to TRUE and deleted.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Limit checks

After Prover9 has finished simplifying our clause C, it checks to
see if C passes certain limits. These are

max_weight max_literals max_depth max_vars

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Max weight

The weight of a clause is based on counting symbols. In
equational problems, the equality symbol is counted, but not
parentheses.

For instance, the associative law

(x * y) » 2z =x * (y * z).
has weight 11.

The default max_weight is 100. If a clause has weight more
than this, it will be deleted.

For many problems, the default is much higher than necessary.
Lowering it can significantly reduce the search space.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Max literals

By default, Prover9 has no limit on the number of literals a
clause may have. Thus the value of max_literalsis —1.

If your input file has clauses with more than one literal, like this:
(x »y) * z=xXxx (y *2z) | (x*y) *xz=2xx* (2 *Y).

then Prover9 might derive clauses with even more literals. If
you suspect that such clauses will not help, try reducing the
value of the flag max_literals.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Max variables

By default, Prover9 has no limit on the number of variables a
clause may have. Thus the value of max_vars is —1.

If you have reasons for thinking that a proof should not require
too many variables, one way to reduce the search space is to
reduce the value of the flag max_vars.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Max depth

Informally, the depth of a clause measures how deeply nested
expressions are.

For example, -p (£ (x)) has depth 2.

By default, Prover9 has no limit on the depth of a clause may
have. Thus the value of max_depth is —1.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Max depth 2

Sometimes, we want to avoid clauses that “overevaluate”
functions.

For instance, if we have a function £ (x) in our input, we might
suspect that clauses of the form

E(E(E(E(E(E(E(X))))))) = x.

will not be useful. Reducing the value of max_depth might
help.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

sos limit

If our poor clause C has gotten this far, Prover9 now checks to
see how full the sos list is. The default value of sos_1imit is
20000. As the size of the sos approaches that number, Prover9
starts discarding “worst” clauses from the sos.

“Worst” is roughly based on weight. The “worst” clause that we
still have will be deleted to make room for C (unless C is even
worse).

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Forward subsumption

Assuming C still survives, now Prover9 checks to see it is
subsumed by some previously derived clause, say B.

Clause B subsumes clause C if the variables of B can be
instantiated in such a way that it becomes a subclause of C.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Kept!

Finally, if C has gotten past all that, it is assigned a clause ID
number and kept.

And now, Prover9 checks to see if C gives a unit conflict, that
is, does C contradict some other kept clause. If so, the search
is finished and we have a proof.

This is called unsafe unit conflict. What can happen is that C
might be a clause that will finish the search, but it gets deleted
by some limit (say, max_weight) before it is checked.

There is an option for safe unit conflict checking, before limits
are applied, but it is computationally expensive.

Automated Deduction and Algebra, Lecture |

LProcessing Inferred Clauses

Using the new clause

Assuming the search is not over, C now gets used in various
ways.

For instance, Prover9 checks to see if C back subsumes
already derived clauses. This is expensive, though, and
Prover9 will stop doing it after 500 given clauses (that value can
be changed).

If C can be used as a demodulator, Prover9 will use it to rewrite
clauses in the sos.

Finally, after a couple of more things | will skip, Prover9 moves
C to the sos list.

Automated Deduction and Algebra, Lecture |

LGiven Selection

Given clause selection

How does Prover9 choose which clause in sos should be the
given clause?

There are many strategies for this.
A breadth first search simply takes the oldest available clause.
A lightest first search takes the lightest available clause.

In practice, the best strategy is a mix: select an old clause, then
a few light clauses, then an old clause, etc.

Automated Deduction and Algebra, Lecture |

LGiven Selection

Given clause selection 2

Prover9’s default selection scheme works in a cycle of 9 steps:

@ Select the oldest available clause
@ Select the four lightest available “false” clauses
@ Select the four lightest available “true” clauses

For now, you can think of “false” as negative and “true” as
nonnegative.

For instance, the denial of the goal is a negative clause. If
Prover9 reasons backwards from the denial, this will generate
new clauses.

Later, when we discuss semantic guidance, we will expand the
definition of “true” and “false”.

Automated Deduction and Algebra, Lecture |

LGiven Selection

Given clause selection 3

The values “1 old, 4 true, 4 false” were chosen experimentally.
In many problems, there are few false clauses available, so it
effectively becomes “1 old, 4 true”.

The numbers can be easily changed.
Later we will discuss how to modify the given selection scheme
for specialized purposes.

“It's all about the given clause.” — Bill McCune

Automated Deduction and Algebra, Lecture |

LGiven Selection

Examples

Let’s now work through some examples illustrating various
ideas.

	Introduction
	Input files
	Preprocessing
	The Main Loop
	Inference Rules
	Rewriting and Term Ordering
	Processing Inferred Clauses
	Given Selection

