
Automated Deduction and Algebra, Lecture III

AUTOMATED DEDUCTION AND ALGEBRA

Lecture III

Michael K. Kinyon

Department of Mathematics

University of Lisbon, 15 June 2009



Automated Deduction and Algebra, Lecture III

Adjusting the Given Clause Cycle

Tweaking the Cycle

The default “1 old, 4 light true, 4 light false” given clause
selection cycle was chosen by the developer because in a
series of experiments with some standard examples, it gave
proofs faster than other possibilities.

But that does not mean it is good for the problem you have at
hand. Fortunately, it is easily modifiable.



Automated Deduction and Algebra, Lecture III

Adjusting the Given Clause Cycle

Tweaking the Cycle II

The easiest way to modify the cycle is to change the values
assigned to its parts.

A more sophisticated way involves writing one’s own cycle:

list(given_selection)
part(Hint,high,weight,hint ) = 1.
part(Age, low, age, all ) = 1.
part(True,low, weight,true) = 4.
part(Weird,low,random,false & vars > 3) = 2.

Many rules for choosing a clause can be put in the fourth slot.



Automated Deduction and Algebra, Lecture III

Adjusting the Given Clause Cycle

Plans

The reason for occasionally picking an “old” clause is that if we
choose clauses lightest first, something important may be
missed.

An idea I am currently working on is to try to find a better
default cycle with schemes like this:

list(given_selection)
part(H,high,weight,hint ) = 1.
part(W1, low, age, 0 < weight & weight <= 10) = 10.
part(W2, low, age, 10 < weight & weight <= 20) = 8.
part(W3, low, age, 20 < weight & weight <= 30) = 6.
etc.

This will require a lot of experiments.



Automated Deduction and Algebra, Lecture III

Something For Which Provers Are Not Helpful

Deduction Over Finite Structures

Although in principle it is possible to specify finite domains for
Prover9 and other provers, they are generally not good at
working with such structures.

Here is an example that actually works, but the complexity of
the proof indicates what the problem is for larger structures.



Automated Deduction and Algebra, Lecture III

Term Weighting

Weighting

Weighting is a method of assigning specific weights to clauses
based on what terms they contain.

list(weights).
weight(a) = 3.
weight(f(a,x)) = 5 * weight(x).
weight(f(a,_)) = -1.
weight(x | y) = 2 + (weight(x) + weight(y)).

end_of_list.



Automated Deduction and Algebra, Lecture III

Semantic Guidance

Semantic Guidance

Next we will turn to another technique for influencing a search
called semantic guidance. The idea is based on the following
somewhat trivial observation:

Some input formulas are more important than others.

So we would like Prover9 to pay more attention to those
formulas and their children than the rest.

One way to do this is to reserve part of the given clause
selection cycle for the important clauses. But how do we mark
them as important?



Automated Deduction and Algebra, Lecture III

Semantic Guidance

Interpretations

We use Mace4 to generate models in which the less important
clauses are true, but the more important clauses are false.

We put the models into an interpretations list.

When a clause is kept, Prover9 evaluates the clause in the
models. If the clause is false, that is, if it fails to hold in any
model, then the clause is labeled “false”.

False derived clauses must be children of the false input
clauses!



Automated Deduction and Algebra, Lecture III

Semantic Guidance

Interpretations II

When it is time for a False clause to be selected as given,
Prover9 selects the lightest clause labeled “false”.

When it is time for a True clause to be selected as given,
Prover9 selects the lightest clause not labeled “false” (which
presumably means the clause is true).



Automated Deduction and Algebra, Lecture III

Semantic Guidance

Limitations

Evaluation of a clause in a model can be expensive if the
model is large or if the number of variables is high. Thus
Prover9 has (modifiable) restrictions on what it will actually
evaluate. For instance, in a model of size 8, it will only
evaluate clauses with at most 2 variables. Clauses left
unevaluated are treated as “true”.
For the same reason, for large jobs, one can quickly run
into memory restrictions.



Automated Deduction and Algebra, Lecture III

Semantic Guidance

The Default Interpretation

If the interpretations list is empty, then Prover9 uses the default
interpretation:

Negative clauses (e.g., children of denials) are false
Nonnegative clauses are true.

Now you know why parts of the given clause cycle are called
“False”, even though strictly speaking, the clauses aren’t false.



Automated Deduction and Algebra, Lecture III

Discovering Axioms

Quasivarieties and Varieties

The same idea that underlies semantic guidance can actually
help us discover new results as well.

Suppose, for instance, that we have some identities and a
quasi-identity in the input. Then the structure we are studying is
a quasivariety (closed under substructures and products, but
possibly not homomorphic images). Perhaps it is a variety?



Automated Deduction and Algebra, Lecture III

Proof Simplification

Ugly Proofs

Provers like Prover9 rarely (= never) find “optimal” proofs, they
just find the first available proof. Sometimes this does not
matter, since we may have wanted only a yes-or-no answer to
the question of whether something is true.

But sometimes we may want to translate a proof into human
form. Or perhaps a journal editor will allow us to publish the
Prover9 proof, but only if it is not too long.

So what can we do when we get a proof that is a real monster?



Automated Deduction and Algebra, Lecture III

Proof Simplification

Naive measures

Here are some criteria for measuring simplicity of a proof:
Length. (But be careful: Prover9’s “Length of Proof” does
not count rewrites.)
Level. Shallower proofs are easier to follow.
Max clause weight. Usually a proof with smaller clauses is
easier to follow.



Automated Deduction and Algebra, Lecture III

Proof Simplification

Use hints!

The basic idea is to rerun the Prover9 job using the first proof
as hints.

This usually (but not always) results in a simpler proof, as
measured naively. This process can be repeated several times.
Sometimes the length and depth will go up. If they don’t go up
too much, that’s OK; they might go down in the next iteration.



Automated Deduction and Algebra, Lecture III

Proof Simplification

Control the max weight

To keep the new search space reasonable, we lower the
maximum clause weight to be equal to that of our first proof.

By default, the maximum weight, variables, literals and depth
limits do not apply to hint matchers. However, this can be
modified as follows:

set(limit_hint_matchers).
assign(max_weight, ...).



Automated Deduction and Algebra, Lecture III

Proof Simplification

Start with a stable proof

Call a proof stable if, when the proof is fed back to Prover9 as
hints, Prover9 generates precisely the same proof.

The first proof found is almost never stable. The preceding
process of running and rerunning jobs often leads to a stable
proof.

Having a stable proof is useful as a starting place from which to
try simplification.



Automated Deduction and Algebra, Lecture III

Proof Simplification

Squeeze the max weight

We set max_weight to be 1 less than the maximum clause
weight of the last stable proof we found, and start again.

Assuming a new proof is found, it is might be more complex in
length and depth than the last stable proof or less complex or
about the same.

In either case, we again set the maximum weight equal to the
proof’s max clause weight and stabilize the proof.



Automated Deduction and Algebra, Lecture III

Proof Simplification

Save often!

This is a lot like playing a video game: we need to save proofs
quite often. Sometimes a proof we find midway through this
process will be much simpler than any proof found later.



Automated Deduction and Algebra, Lecture III

Proof Simplification

Change how hints are selected

Eventually, the maximum weight will be as low as it can be for
Prover9 to find a proof; setting it any lower will lead to a failed
search.

By default, hint matchers are chosen lightest first. This can be
changed:

set(breadth_first_hints).

This can “shake up” the search space enough to allow a new
proof to be found. This can be turned on and off repeatedly just
to see what happens.



Automated Deduction and Algebra, Lecture III

Proof Simplification

Play with given selection

Assuming the most recent proof is stable, another technique to
simplify the proof is to modify the given clause cycle.

By default, hint matchers have high priority. We can change this
to force Prover9 to avoid hint matchers and to choose other
clauses for a while.



Automated Deduction and Algebra, Lecture III

Proof Simplification

Other techniques

Term weighting. Pesky clauses can be “blocked” from
participating in a proof by putting them in a weight list and
setting their weights larger than the maximum clause
weight. (This usually only leads to minor improvements.)
Combine hints from different proofs.
Start over. Start again with no hints and a small max
weight and see if that helps.



Automated Deduction and Algebra, Lecture III

Proof Simplification

Most importantly

Stop!

Don’t waste hours on this. There is a law of diminishing returns.

If you can remove several hundred steps from a proof, go
ahead.

But if you spend hours shortening a proof by one step, you
should go outside and get some fresh air.


	Adjusting the Given Clause Cycle
	Something For Which Provers Are Not Helpful
	Term Weighting
	Semantic Guidance
	Discovering Axioms
	Proof Simplification

