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What are lattices?

First, let a partially ordered set or poset be a binary relation
“≤” over a set P such that ∀a, b, c ∈ P satisfies:

I Reflexivity: a ≤ a.

I Antisymmetry: if a ≤ b and b ≤ a, then a = b.

I Transitivity: if a ≤ b and b ≤ c, then a ≤ c .

Then, we say a partially ordered set (L,≤) is a lattice if it satisfies
the following axioms:

I For any two elements a and b of L, there exists a least upper
bound, refered to as the join a ∨ b.

I For any two elements a and b of L, there exists a greatest
lower bound, refered to as the meet a ∧ b.



What are lattices?

First, let a partially ordered set or poset be a binary relation
“≤” over a set P such that ∀a, b, c ∈ P satisfies:

I Reflexivity: a ≤ a.

I Antisymmetry: if a ≤ b and b ≤ a, then a = b.

I Transitivity: if a ≤ b and b ≤ c, then a ≤ c .

Then, we say a partially ordered set (L,≤) is a lattice if it satisfies
the following axioms:

I For any two elements a and b of L, there exists a least upper
bound, refered to as the join a ∨ b.

I For any two elements a and b of L, there exists a greatest
lower bound, refered to as the meet a ∧ b.



Example 1

I For any set X, all the subsets of the power set P(X ) form a
lattice with the order relation A ≤ B meaning A is a subset of
B (A ⊆ B). Then, A ∨ B = A ∪ B and A ∧ B = A ∩ B.
Example: P({a, b, c}) =
{{a, b, c}, {a, b}, {a, c}, {b, c}, {a}, {b}, {c}, ∅}.

Figure 1: Power Set Lattice of {a,b,c}.



Example 2

I However, the following poset is not a lattice since a and b do
not have a least upper bound, as we do not know which is
smaller among c and d .

0

a b

c d

1

Figure 2. Example of a poset which is not a lattice.



Distributive Lattices

I A distributive lattice D is a lattice that satisfies the
distributive law x , y , z ∈ D:
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

I An alternative way to view distributive lattices is by
Birkhoff’s Theorem: L is a nondistributive lattice iff M3 or
N5 can be embedded into L.

Figure 3: M3 and N5.

I Examples of distributive lattices are:

I Boolean algebras.
I Natural numbers with the gratest common divisor as meet and

the least common multiple as join.
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Modular Lattices

I A modular lattice M is a lattice that satisfies the modular
law x , y , z ∈ M:
(x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].

I An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

Figure 4: N5.

I All distributive lattices are modular lattices.
I Examples of modular lattices are:

I Lattices of subspaces of vector spaces.
I Lattices of ideals of a ring.
I Lattices of normal subgroups of a group.



Modular Lattices

I A modular lattice M is a lattice that satisfies the modular
law x , y , z ∈ M:
(x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].

I An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

Figure 4: N5.

I All distributive lattices are modular lattices.
I Examples of modular lattices are:

I Lattices of subspaces of vector spaces.
I Lattices of ideals of a ring.
I Lattices of normal subgroups of a group.



Modular Lattices

I A modular lattice M is a lattice that satisfies the modular
law x , y , z ∈ M:
(x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].

I An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

Figure 4: N5.

I All distributive lattices are modular lattices.

I Examples of modular lattices are:

I Lattices of subspaces of vector spaces.
I Lattices of ideals of a ring.
I Lattices of normal subgroups of a group.



Modular Lattices

I A modular lattice M is a lattice that satisfies the modular
law x , y , z ∈ M:
(x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].

I An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

Figure 4: N5.

I All distributive lattices are modular lattices.
I Examples of modular lattices are:

I Lattices of subspaces of vector spaces.
I Lattices of ideals of a ring.
I Lattices of normal subgroups of a group.



Modular Lattices

I A modular lattice M is a lattice that satisfies the modular
law x , y , z ∈ M:
(x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].

I An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

Figure 4: N5.

I All distributive lattices are modular lattices.
I Examples of modular lattices are:

I Lattices of subspaces of vector spaces.

I Lattices of ideals of a ring.
I Lattices of normal subgroups of a group.



Modular Lattices

I A modular lattice M is a lattice that satisfies the modular
law x , y , z ∈ M:
(x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].

I An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

Figure 4: N5.

I All distributive lattices are modular lattices.
I Examples of modular lattices are:

I Lattices of subspaces of vector spaces.
I Lattices of ideals of a ring.

I Lattices of normal subgroups of a group.



Modular Lattices

I A modular lattice M is a lattice that satisfies the modular
law x , y , z ∈ M:
(x ∧ y) ∨ (y ∧ z) = y ∧ [(x ∧ y) ∨ z)].

I An alternative way to view modular lattices is by Dedekind’s
Theorem: L is a nonmodular lattice iff N5 can be embedded
into L.

Figure 4: N5.

I All distributive lattices are modular lattices.
I Examples of modular lattices are:

I Lattices of subspaces of vector spaces.
I Lattices of ideals of a ring.
I Lattices of normal subgroups of a group.



Our Objective

We wish to come up with an algorithm which can efficiently
generate all possible finite modular lattices of a given size n up to
isomorphism.

Why is this important?

1. The generated modular lattices can provide a tool for other
scientists to verify conjectures and/or find counterexamples.

2. Better understanding of modular lattices.

3. Discovering new structural properties of modular lattices.



Counting Finite Lattices
Heitzig and Reinhold [2000] developed an orderly algorithm to
enumerate all finite lattices and used it to count the number of
lattices up to size 18. To explain their algorithm, we give some
definitions related to posets and lattices:

I We say that b is a cover of a if a < b and there is no element
c such that a < c < b, and denote this by a ≺ b.

I We call ↑ A = {x ∈ L | a ≤ x for some a ∈ A} the upper set
of A.

I The set of all maximal elements in L is called the first level of
L (lev1(L)). The (m+1)-th level of P can be recursively

defined by levm+1(L) = lev1(L−
m⋃
i=1

levi (L)).

I An antichain is a subset of L in which any two elements in
the subset are incomparable.

I A lattice antichain A is an antichain in which for any
a, b ∈↑ A, a ∧ b ∈↑ A ∪ {0}.
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Counting Finite Lattices (continued)

Using these definitions, a recursive algorithm can be formulated
that generates for a given natural number n ≥ 2 exactly all
canonical lattices up to n elements starting with the two element
lattice, where LA is the lattice obtained from L by adding a new
element with the subset A ∈ L as a cover:
next lattice(integer m, canonical m-lattice L)
begin

if m < n then

for each lattice-antichain A of L do

if LA is a canonical lattice then

next lattice (m + 1, LA)

if m = n then output L
end

Most of the time in this algorithm is spent in testing if LA is
canonical, as all permutations of LA have to be checked to see if
LA is canonical. However, some properties allow to reduce the
number of checkings needed.
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Counting Finite Lattices: Modular Lattices

This algorithm can be modified such that when a lattice of size n
is generated, the algorithm checks if it is modular.
Some properties can be used to reduce the number of checkings:

I Lemma: If the lattice L′ with the elements in the third to last
level of L as atoms is non-modular, then all descendant
lattices of L are non-modular.

I Lemma: If there are any two elements a, b ∈ A contained in
different levels of L, then all descendants are non-modular.

I Lemma: When constructing all modular lattices, it suffices to
use lattice antichains that are subsets of the bottom level or
subsets of the second lowest level. Subsets of the bottom level
need only be used if there are no atoms in the second lowest
level.



Dealing with Isomorphisms

I The canonical checking in the first algorithm is of order O(n!),

I The time spent in this check can be drastically reduced by
using the method of generation by canonical construction
path introduced by McKay.

I This method consists on generating the lattices in a way such
that it is not necessary to test if the lattice has the lowest
weight among all possible permutations.

I Instead, it uses a defined path construction incorporating
Nauty canonical labeling.

procedure scan(X : labelled object, n : integer)
output X

for each orbit A of the action of Aut(X ) on U(X ) do

select any
∧
X ∈ A

if f ′(
∧
X ) 6= ∅ then

select any
∨
Y ∈ f ′(

∧
X )

if o(Y ) ≤ n and
∨
Y ∈ m(Y ) then scan(Y ,n)

endprocedure



Counting Distributive Lattices
A second and cheaper approach comes from an orderly algorithm
used by Erné, Heitzig and Reinhold [2002] to generate and count
the distributive lattices up to n=49; a subclass of modular lattices.

I Consider a distributive lattice D = (k ,≤) of size k and choose
an element z ∈ D.

I Find the principal filter I =↑ z .

I The principal filter I is ”doubled” to generate the set
I ↑ = {k , . . . , k + |I | − 1} with an isomorphism mapping
ψ : I ↑ → I .

I Define a new relation ≤↑ on the set k + |I | by:
x ≤↑ y ⇔ (x , y < k and x ≤ y) or (x , y ≥ k and
ψ(x) ≤ ψ(y)) or (x < k ≤ y and x ≤ ψ(y)).

I The generated lattice D ↑ z := (k + |I |,≤↑) is again a
distributive lattice.

I Theorem: Every distributive lattice of finite cardinality is
isomorphic to a lattice of the form D0 ↑ z1 ↑ . . . ↑ zn with
|D0| = 1 and a sequence with 0 = z1 ≤ z2 ≤ . . . ≤ zn.



Counting Distributive Lattices: Example

First, we chose an element, say z = 1.

For the selected z, we calculate I =↑ z = {1, 3}.Next, we “double” I, obtaining I ↑ = {4, 5}.
Then, we connect the points in I ↑ to their corresponding

images under ψ and update the values of ≤↑.
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Figure 1: A handy network of distributive lattices of size 6 8 or height 6 4
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Modular Lattices: Example



Counting Distributive Lattices: Extension

I The following figure shows a distributive (and modular) lattice
(left) and a non-distributive modular lattice (right).

Figure 5

I Idea: Must find a way to insert vertices such that the
extended poset is still a lattice and is modular.

I Theorem: Let a, b ∈ M for a modular lattice M such that
a < b and the longest chain from a to b is of length 3 and
Covers(a) = Co-covers(b), then the lattice produced by
inserting a new point between a and b is a modular lattice.



Counting Distributive Lattices: Extension
However, with the doubling and adding point operations, there are
still some modular lattices which are not generated. For example,
the subspace lattices of projective geometries, a special type of
geometric lattice. We add these as building blocks.

A)

B)

Figure : Geometric lattices of subspaces of A) Z3
2 (n = 16) and B) Z3

3

(n = 28).



Results
n Lattices Mod. Lattices Alg.1(min) Alg.1 Mod.(min) Alg.2(min)

1 1 1 0 0 0
2 1 1 0 0 0
3 1 1 0 0 0
4 2 2 0 0 0
5 5 4 0 0 0
6 15 8 0 0 0
7 53 16 0 0 0
8 222 34 0 0 0
9 1,078 72 0 0 0

10 5,994 157 0 0 0
11 37,622 343 0 0 0
12 262,776 766 0.8 0 0.08
13 2,018,305 1,718 17 0.2 0.3
14 16,873,364 3,899 308 1 1.9
15 152,233,518 8,898 5320 5 10
16 1,471,613,387 20,475 – 30 59
17 15,150,569,446 47,321 – 130 –
18 165,269,824,761 110,024 – 510 –
19 – 256,791 – 2,000 –

Table : Number of lattices and modular lattices up to isomorphism from
n=1 to n=19 with corresponding times of the different algorithms. New
numbers are in bold.



Conclusion

1. The number of unique modular lattices up to isomorphism has
been counted up to size n = 19 (they had previously been
counted up to n = 12).

2. The algorithm used by Heitzig and Reinhold to generate all
finite lattices has been improved with McKay’s isomorph-free
exhaustive generation.

3. A second algorithm which generates only modular lattices has
been developed. However, it does not necessarily generate all
modular lattices, so is only used for verification.

4. This algorithm can be modified to work for other types of
lattice structures, such as:

I Semimodular lattices.
I Semidistributive lattices.
I Almost distributive lattices.
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