February 2022
formulas(assumptions).
% loop axioms
1 * x = x.
x * 1 = x.
x \ (x * y) = y.
x * (x \ y) = y.
(x * y) / y = x.
(x / y) * y = x.
% associator (right associated * a = left associated)
(x * (y * z)) \ ((x * y) * z) = a(x,y,z) # label("associator").
% commutator ( (x * y) * K(y,x) = y * x )
(x * y) \ (y * x) = K(y,x) # label("commutator").
% inner mappings
(y * x) \ (y * (x * u)) = L(u,x,y).
((u * x) * y) / (x * y) = R(u,x,y).
x \ (u * x) = T(u,x).
% abelian inner mapping group
T(T(u,x),y) = T(T(u,y),x).
T(L(u,x,y),z) = L(T(u,z),x,y).
T(R(u,x,y),z) = R(T(u,z),x,y).
L(R(u,x,y),z,w) = R(L(u,z,w),x,y).
L(L(u,x,y),z,w) = L(L(u,z,w),x,y).
R(R(u,x,y),z,w) = R(R(u,z,w),x,y).
end_of_list.
AIM loops are nilpotent of class 3.
Status:
(in, out, pf, xml)
(in, out, pf, xml)
(in, out, pf, xml)
formulas(goals).
% aK (or "single-a") goals
K(a(x,y,z),u) = 1 # label("Ka").
a(K(x,y),z,u) = 1 # label("aK1").
a(x,K(y,z),u) = 1 # label("aK2").
a(x,y,K(z,u)) = 1 # label("aK3").
% aa (or "double-a") goals
a(a(x,y,z),u,w) = 1 # label("aa1").
a(x,a(y,z,u),w) = 1 # label("aa2").
a(x,y,a(z,u,w)) = 1 # label("aa3").
end_of_list.
x * ((y * z) \ x) = (x / z) * (y \ x) # label("middle Bol").
K(K(x,y),z) = 1 # label("KK").