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Abstract. We describe a method for computing the likelihood that a
completion joining two contour fragments passes through any given posi-
tion and orientation in the image plane, that is, a method for completing
the boundaries of partially occluded objects. Like computations in pri-
mary visual cortex (and unlike all previous models of contour completion
in the human visual system), our computation is Euclidean invariant.
This invariance is achieved in a biologically plausible manner by repre-
senting the input, output, and intermediate states of the computation in
a basis of shiftable-twistable functions. The spatial components of these
functions resemble the receptive fields of simple cells in primary visual
cortex. Shiftable-twistable functions on the space of positions and direc-
tions are a generalization of shiftable-steerable functions on the plane.

1 Introduction

Any computational model of human visual information processing must reconcile
two apparently contradictory observations. First, computations in primary visual
cortex are largely Euclidean invariant—an arbitrary rotation and translation of
the input pattern of light falling on the retina produces an identical rotation and
translation of the output of the computation. Second, simple calculations based
on the size of primary visual cortex (60 mm × 80 mm) and the observed density
of cortical hypercolumns (4/mm2) suggest that the discrete spatial sampling of
the visual field is exceedingly sparse [24]. The apparent contradiction becomes
clear when we ask the following questions: How is this remarkable invariance
achieved in computations performed by populations of cortical neurons with
broadly tuned receptive fields centered at so few locations? Why doesn’t our
perception of the world change dramatically when we tilt our head by 5 degrees?1

1 Ulf Eyesel asks a related question in a recent Nature paper [5]:

“On average, a region of just 1 mm2 on the surface of the cortex will contain
all possible orientation preferences, and, accordingly, can analyze orientation
for one small area of the visual field. This topographical arrangement allows
closely spaced objects with different orientations to interact. But it also means
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Fig. 1. (a) Ehrenstein Figure (b) Kanizsa Triangle

One of the main goals of our research is to show how the sparse and see-
mingly haphazard nature of the sampling of the visual field can be reconciled
with the Euclidean invariance of visual computations. To realize this goal, we
introduce the notion of a shiftable-twistable basis of functions on the space,
R2×S1, of positions and directions. This notion is a generalization of the notion
of a shiftable-steerable basis of functions on the plane, R2, introduced by Free-
man, Adelson, Simoncelli, and Heeger in two seminal papers [6,18]. Freeman and
Adelson [6] clearly appreciated the importance of the issues raised above when
they devised the notion of a steerable basis to implement rotationally invariant
computations. In fact, for computations in the plane the contradictions discus-
sed above were largely resolved with the introduction by Simoncelli et al. [18]
of the shiftable-steerable pyramid transform, which was specifically designed to
perform Euclidean invariant computations on R2. The basis functions in the
shiftable-steerable pyramid are very similar to simple cell receptive fields in pri-
mary visual cortex. However, many computations in V1 and V2 likely operate
on functions of the space of positions and directions, R2 × S1, rather than on
functions of the plane, R2 (e.g., [8,9,13,16,17,21,22,25]). Consequently, we pro-
pose that shiftability-twistability (in addition to shiftability-steerability) is the
property which binds sparsely distributed receptive fields together functionally
to perform Euclidean invariant computations in visual cortex.

In this article, we describe a new algorithm for completing the boundaries of
partially occluded objects. This algorithm is based on a computational theory of
contour completion in primary and secondary visual cortex developed in recent
years by Williams and colleagues [19,20,21,22]. Like computations in V1 and V2,
and unlike previous models of illusory contour formation in the human visual
system, our computation is Euclidean invariant. This invariance is achieved by

that a continuous line across the whole visual field would be cortically depicted
in a patchy, discontinuous fashion. How can the spatially separated elements
be bound together functionally?”
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representing the input, output, and intermediate states of the computation in a
basis of shiftable-twistable functions.

Mumford [15] proposed that the probability distribution of natural shapes
can be modeled by particles traveling with constant speed in directions given by
Brownian motions. More recently, Williams and Jacobs [21] defined the stochastic
completion field to be the distribution of particle trajectories joining pairs of
position and direction constraints, and showed how it could be computed in a
neural network.

The neural network described in [22] is based on Mumford’s observation that
the evolution in time of the probability density function (p.d.f.) representing
the position, (x, y), and direction, θ, of the particle can be modeled as a set
of independent advection equations acting in the (x, y) dimension coupled in
the θ dimension by the diffusion equation [15]. Unfortunately, solutions of this
Fokker-Planck equation computed by numerical integration on a rectangular
grid do not exhibit the robust invariance under rotations and translations which
characterizes the output of computations performed in primary visual cortex.
Nor does any other existing model of contour completion, sharpening, or saliency
(e.g., [8,9,13,16,17,21,22,25]).

Our new algorithm computes stochastic completion fields in a Euclidean
invariant manner. Figure 2 (left) is a picture of the stochastic completion field
due to the Kanizsa Triangle stimulus in Figure 1(b). Figure 2 (right) shows
the stochastic completion field due to a rotation and translation of the (input)
Kanizsa Triangle. The Euclidean invariance of our algorithm can be seen by
observing that the (output) stochastic completion field on the right in Figure 2
is itself a rotation and translation of the stochastic completion field on the left,
by the same amount.

2 Relevant Neuroscience

Our new Euclidean invariant algorithm was motivated, in part, by the following
experimental findings. To begin with, the receptive fields of simple cells, which
have been traditionally described as edge (or bar) detectors, can be accurately
modeled using two-dimensional Gabor functions [3,14], which are the product
of a Gaussian (localized in position) and a harmonic grating (localized in ori-
entation and spatial frequency). Gabor functions are well suited to the purpose
of encoding visual information, since, by the Heisenberg Uncertainty Principle,
they are the unique functions which are maximally localized in both space and
frequency.

The sampling of the visual field in V1 is quite sparse—there are about about
100×100 hypercolumns, with receptive fields of about 5 scales and 16 orientations
in each hypercolumn. Neglecting size (and phase), a simple cell receptive field can
be parameterized by its position and orientation. The spatial distribution of these
two parameters, known as orientation preference structure, is an attempt (on the
part of evolution) to smoothly map the three-dimensional parameter space, R2×
S1, of edge positions and orientations onto the two-dimensional surface, of the
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Fig. 2. Stochastic completion fields: Of Kanizsa Triangle (left) and after the initial
conditions have been rotated and translated (right)

visual cortex, R2. Due to the differences in dimensionality, orientation preference
structure is punctuated by so-called pinwheels, which are the singularities in this
mapping [1].

As a first approximation, a neuron’s response to an arbitrary grey-level image
can be modeled as the L2-inner product of the image with the neuron’s recep-
tive field. These experimental observations suggested to Daugman [4] that an
ensemble of simple cell receptive fields can be regarded as performing a wavelet
transform of the image, in which the responses of the neurons correspond to the
transform coefficients and the receptive fields correspond to the basis functions.

Recent experiments have demonstrated that the response of simple cells in
V1 can be modulated by stimuli outside the classical receptive fields. Apart
from underscoring the limitations of the classical (linear) model, they suggest
a function for the long-range connections which have been observed between
simple cells. For example, in a recent experiment, Gilbert [7] has demonstrated
that a short horizontal bar stimulus can modulate the response of simple cells
whose receptive fields are located at a significant horizontal distances from the
bar, and which have a similar orientation preference to the bar. Non-linear long-
range effects have also been observed in secondary visual cortex. For example,
von der Heydt et al.[10] reported that the firing rate of certain neurons in V2
increases when their “receptive fields” are crossed by illusory contours (of specific
orientations) which are induced by pairs of bars flanking the receptive field.
Significantly, these neurons do not respond to these same bars presented in
isolation—they only respond to pairs.2

2 These experiments suggests that the source and sink fields, which are intermediate
representations in Williams and Jacobs model of illusory contour formation, could be
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Although our new contour completion algorithm does not provide a model for
illusory contour formation in the brain which is realistic in every respect, it does
have several features which are biologically plausible, none of which are found
in previous algorithms, e.g., [8,9,13,16,17,21,22,25]. These features are that (1)
all states of the computation be represented in a wavelet-like basis of functions
which are localized in both space and frequency (spatial localization allows the
computation to be performed in parallel); (2) the computation operates on the
coefficients in the wavelet-like transform and can be implemented in a neural
network; (3) the computation is Euclidean invariant; and (4) it is accomplished
using basis functions with centers lying on a (relatively) sparse grid in the image
plane.

3 Shiftable-Twistable Bases

Many visual and image processing tasks are most naturally formulated in the
continuum and are invariant under a group of symmetries of the continuum. The
Euclidean group, of rotations and translations, is one example of a continuous
symmetry group. However, because discrete lattices are not preserved by the
action of continuous symmetry groups, the natural invariance of a computation
can be easily lost when it is performed in a discrete network. In this section we
will introduce the notion of a shiftable-twistable basis and show how it can be
used to implement discrete computations on the continuous space of positions
and directions in a way which preserves their natural invariance.

In image processing, the input and output are functions on R2, and the
appropriate notion of the invariance of computations is Euclidean invariance—
any rotation and translation of the input should produce an identical rotation
and translation of the output. Simoncelli et al. [6,18] introduced the notion of a
shiftable-steerable basis of functions on R2, and showed how it can be used to
achieve Euclidean invariance in discrete computations for image enhancement,
stereo disparity measurement, and scale-space analysis.

Given the nature of simple cell receptive fields, the input and output of
computations in primary visual cortex are more naturally thought of as functions
defined on the continuous space, R2 × S1, of positions, x = (x, y), in the plane,
R2, and directions, θ, in the circle, S1. For such computations the appropriate
notion of invariance is determined by those symmetries, Tx0,θ0 , of R

2×S1, which
perform a shift in R2 by x0, followed by a twist in R2 × S1 through an angle,
θ0. A twist through an angle, θ0, consists of two parts: (1) a rotation, Rθ0 , of R

2

and (2) a translation in S1, both by θ0. The symmetry, Tx0,θ0 , which is called a
shift-twist transformation3, is given by the formula,

T(x0,θ0)(x, θ) = (Rθ0(x − x0) , θ − θ0) . (3.1)

represented by populations of simple cells in V1, and that the stochastic completion
field, which is the product of the source and sink fields, could be represented in V2.

3 The relationship between shift-twist transformations and computations in V1 was
described by Williams and Jacobs in [21] and more recently by Kalitzin et al. [12]
and Cowan [2].
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A visual computation on R2×S1 is called shift-twist invariant if, for all (x0, θ0) ∈
R2 × S1, a shift-twist of the input by (x0, θ0) produces an identical shift-twist
of the output.

Correspondingly, we define a shiftable-twistable basis4 of functions on R2×S1

to be a set of functions on R2 × S1 with the property that whenever a function,
P (x, θ), is in their span, then so is P (Tx0,θ0(x, θ)), for every choice of (x0, θ0) in
R2×S1. As such, the notion of a shiftable-twistable basis on R2×S1 generalizes
that of a shiftable-steerable basis on R2.

Shiftable-twistable bases can be constructed as follows. First we recall Si-
moncelli’s concept of the shiftability of a function, which is closely related to the
Shannon-Whittaker Sampling Theorem. A periodic function, ψ(x), of period X,
is shiftable if there is an integer, K, such that the shift of ψ by an arbitrary
amount, x0, can be expressed as a linear combination of K basic shifts of ψ, i.e.,
if there exist interpolation functions, bk(x0), such that

ψ(x − x0) =
∑K−1

k=0 bk(x0) ψ(x − k∆) , (3.2)

where ∆ = X/K is the basic shift amount. The simplest shiftable function
in one dimension is a pure harmonic signal, eiωx, in which case K = 1. More
generally, Simoncelli et al. [18] proved that any band-limited function is shiftable.
In fact, if the set of non-zero Fourier series frequencies of ψ is (a subset of)
B = {ω0, ω0+1, . . . , ω0+K−1}, then ψ can be shifted using the K interpolation
functions, bk(x0) = b(x0−k∆), where b(x) is the complex conjugate of the perfect
bandpass filter constructed from the set of K frequencies, B. In particular, note
that the interpolation functions only depend on the set of non-zero frequencies
of ψ, and not on ψ itself.

Strictly speaking, since they are not band-limited, functions such as Gabors
are not shiftable. Nevertheless, for all intents and purposes, they can be shifted
by choosing the set, B, to consist of all Fourier series frequencies, ω, of ψ, such
that the Fourier amplitude, |ψ̂(ω)|, is essentially non-zero (i.e., it exceeds some
small threshold value). Such functions will be called effectively shiftable.

Let Ψ(x, θ) be a function on R2 × S1 which is periodic (with period X) in
both spatial variables, x. In analogy with the definition of a shiftable-steerable
function on R2, we say that Ψ is shiftable-twistable on R2 × S1 if there are
integers, K and M , and interpolation functions, bk,m(x0, θ0), such that, for each
(x0, θ0) ∈ R2 × S1, the shift-twist of Ψ by (x0, θ0) is a linear combination of a
finite number of basic shift-twists of Ψ by amounts (k∆,m∆θ), i.e., if

Ψ(Tx0,θ0(x, θ)) =
∑

k,m bk,m(x0, θ0) Ψ(Tk∆,m∆θ
(x, θ)) . (3.3)

Here ∆ = X/K is the basic shift amount and ∆θ = 2π/M is the basic twist
amount. The sum in equation (3.3) is taken over all pairs of integers, k = (kx, ky),
in the range, 0 ≤ kx, ky < K, and all integers, m, in the range, 0 ≤ m < M .
For many shiftable-twistable bases, the interpolation functions, bk,m(x0, θ0), are
defined in terms of Simoncelli’s one-dimensional interpolation functions, bk(x0).
4 We use this terminology even though the basis functions need not be linearly inde-
pendent.
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The simplest example of a shiftable-steerable basis is the Gaussian-Fourier
basis, Gk,ω, which is the product of a shiftable-steerable basis of Gaussians in x

and a Fourier series basis in θ. Let g(x) = 1
ν e−‖x‖2/2ν2

be a radial Gaussian of
standard deviation, ν. We regard g as a periodic function of period, X, which is
chosen to be much larger than ν, so that g defines a smooth periodic function.
For each frequency, ω, we define Gω(x, θ) = g(x)eiωθ. Also, given a choice of a
shift amount, ∆, so that K = X/∆ is an integer, we define the Gaussian-Fourier
basis functions, Gk,ω, by

Gk,ω(x, θ) = g(x − k∆) eiωθ . (3.4)

The following proposition implies that the Gaussian-Fourier basis is shiftable-
twistable.

Proposition 1. The periodic function, Gω, (of period X) is effectively shiftable-
twistable. More precisely, let M = 1 and let K be the number of essentially
non-zero Fourier series coefficients of the factor, gX(x) = e−x2/2ν2

, of g(x).
Then,

Gω(Tx0,θ0(x, θ)) =
∑
k

bk,ω(x0, θ0) Gk,ω(x, θ) , (3.5)

where the interpolation functions are given by

bk,ω(x0, θ0) = e−iωθ0 bk(x0) . (3.6)

Here bk(x0) = b(x0 − k∆), where b(x0) is the complex conjugate of the perfect
bandpass filter constructed from the set of K2 essentially non-zero Fourier series
coefficients, η, of g(x).

For certain computations, the input can be easily represented in a Gaussian-
Fourier basis. For example, suppose that the input is modeled as a linear com-
bination of fine scale three-dimensional Gaussians, centered at arbitrary points,
(x0, θ0), in R2 × S1. Since the input is the product of a Gaussian in x and a
Gaussian in θ it can be represented in a single scale Gaussian-Fourier basis as
follows. First, the Gaussian in θ is represented in the Fourier basis using the
standard analysis and synthesis formulae for Fourier series. Second, if the two-
dimensional input Gaussians in x are chosen to be shifts of the basis function,
g(x), then we can use Proposition 1 to represent the input Gaussians in x in the
Gaussian basis.

A somewhat more biologically plausible basis is the complex directional deri-
vative of Gaussian (CDDG)-Fourier basis, which is very similar to the previous
example, except that the Gaussian, g(x), is replaced by its complex directional
derivative in the direction of the complex valued vector, [1, i]T. The CDDG looks
more like the receptive field of a simple cell in V1 than a Gaussian does. Also
the CDDG is a wavelet, whereas the Gaussian is not.
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4 Stochastic Completion Fields

In their computational theory of illusory contour formation, Williams and Jac-
obs [21] argued that, given a prior probability distribution of possible comple-
tion shapes, the visual system computes the local image plane statistics of the
distribution of all possible completions, rather than simply the most probable
completion. This view is in accord with human experience—some illusory con-
tours are more salient than others, and some appear sharper than others. They
defined the notion of a stochastic completion field to model illusory contours in
a probabilistic manner. The stochastic completion field is a probability density
function (p.d.f.) on the space, R2 × S1, of positions, x = (x, y), in the plane,
R2, and directions, θ, in the circle, S1. It is defined in terms of a set of posi-
tion and direction constraints representing the beginning and ending points of
a set of contour fragments (called sources and sinks), and a prior probability
distribution of completion shapes, which is modeled as the set of paths followed
by particles traveling with constant speed in directions described by Brownian
motions [15]. The magnitude of the stochastic completion field, C(x, θ), is the
probability that a completion from the prior probability distribution will pass
through (x, θ) on a path joining two of the contour fragments. Williams and
Jacobs [21] showed that the stochastic completion field could be factored into a
source field and a sink field. The source field, P ′(x, θ), represents the probability
that a contour beginning at a source will pass through (x, θ) and the sink field,
Q′(x, θ), represents the probability that a contour beginning at (x, θ) will reach
a sink. The completion field is

C(x, θ) = P ′(x, θ) · Q′(x, θ) . (4.1)

The source (or sink) field itself is obtained by integrating a probability density
function, P (x, θ ; t), over all positive times, t, where P (x, θ ; t) represents the
probability that a particle beginning at a source reaches (x, θ) at time t,

P ′(x, θ) =
∞∫
0

P (x, θ ; t)dt . (4.2)

Mumford [15] observed that P evolves according to a Fokker-Planck equation of
the form,

∂P
∂t = − cos θ ∂P

∂x − sin θ ∂P
∂y + σ2

2
∂2P
∂θ2 − 1

τ P , (4.3)

where the initial probability distribution of sources (or sinks) is described by
P (x, θ ; 0). This partial differential equation can be viewed as a set of independent
advection equations in x = (x, y) (the first and second terms) coupled in the θ
dimension by the diffusion equation (the third term). The advection equations
translate probability mass in direction θ with unit speed, while the diffusion
term models the Brownian motion in direction, with diffusion parameter, σ. The
combined effect of these three terms is that particles tend to travel in straight
lines, but over time they drift to the left or right by an amount proportional to
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σ2. Finally, the effect of the fourth term is that particles decay over time, with
a half life given by the decay constant, τ . This represents our prior expectation
on the length of gaps—most are quite short. In [22] stochastic completion fields
were computed by solving the Fokker-Planck equation using a standard finite
differencing scheme on a regular grid.

5 Description of Algorithm

One of the main goals of this paper is to derive a discrete numerical algorithm
to compute stochastic completion fields in a shift-twist invariant manner. This
invariance is achieved by first evolving the Fokker-Planck equation in a shiftable-
twistable basis of R2 ×S1 to obtain representations of the source and sink fields
in the basis, and then multiplying these representations in a shift-twist invariant
manner to obtain a representation of the completion field in a shiftable-twistable
basis.

We observe that a discrete Dirac basis, consisting of functions, Ψk,m(x, θ) =
δ(x − k∆) δ(θ − m∆θ), where (k,m) is a triple of integers, is not shiftable-
twistable. This is because a Dirac function located off the grid of Dirac basis
functions is not in their span.

A major shortcoming of previous contour completion algorithms [8,9,13,16,
17,21,22,25] is that they perform computations in this basis. As a consequence,
initial conditions which do not lie directly on the grid cannot be accurately re-
presented. This problem is often skirted by researchers in this area by choosing
input patterns which match their choice of sampling rate and phase. For exam-
ple, Li [13] used only six orientations (including 0◦) and Heitger and von der
Heydt [9], only twelve (including 0◦, 60◦ and 120◦). Li’s first test pattern was a
line of orientation, 0◦, while Heitger and von der Heydt used a Kanizsa Triangle
with sides of 0◦, 60◦, and 120◦ orientation. There is no reason to believe that the
experimental results they show would be the same if their input patterns were
rotated by as little as 5◦.5

In addition to the problem of representing the input, the computation itself
must be Euclidean invariant. Stochastic completion fields computed using the
finite differencing scheme of [22] exhibit marked anisotropic spatial smoothing
due to the manner in which 2D advection is performed on a grid (see Figures 4,5
and 6). Although probability mass advects perfectly in either of the two principal
coordinate directions, mass which is moving at an angle to the grid gradually
disperses, since, at each time step, bilinear interpolation is used to place the
mass on the grid.

For reasons of simplicity, in this paper, we chose to compute stochastic com-
pletion fields in a Gaussian-Fourier basis.6 The initial conditions for the Fokker-
5 Nor are we blameless in this respect. Williams and Jacobs [21,22] used 36 directions
(including 0◦, 60◦ and 120◦) and demonstrated their computation with a Kanizsa
Triangle with sides of 0◦, 60◦ and 120◦ orientation.

6 The computation can also be performed in more biologically plausible shiftable-
twistable bases, the simplest of which is the CDDG-Fourier basis.
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Planck initial value problem are modeled by fine scale, three-dimensional Gaus-
sians, whose centers are determined by the locations and directions of the edge
fragments to be completed. We use the single scale method discussed in Section 3
to represent the initial conditions in the basis.

To solve the Fokker-Planck equation, we express its solution in terms of the
basis functions, Gk,ω(x, θ), as

P (x, θ ; t) =
∑

k,ω ck,ω(t)Gk,ω(x, θ) , (5.1)

where the coefficients, ck,ω(t), depend on time. Then, we derive a linear trans-
formation, c(t+∆t) = (A ◦D)c(t), to evolve the coefficient vector in time. This
transformation is the composition of an advection transformation, A, which has
the effect of transporting probability mass in directions θ, and a diffusion-decay
transformation, D, which implements both the diffusion of mass in θ, and the
decay of mass over time. Representations of source or sink fields in the basis are
obtained by integrating the coefficient vector, c(t), over time, where the initial
coefficient vector represents the initial sources or sinks.

The shiftability-twistability of the basis functions is used in two distinct ways
to obtain shift-twist invariant source and sink fields. First, it enables any two
initial conditions, which are related by an arbitrary transformation, Tx0,θ0 , to
be represented equally well in the basis. Second, it is used to derive a shift-twist
invariant advection transformation, A, thereby eliminating the grid orientation
artifacts described above. In summary, given a desired resolution at which to
represent the initial conditions, our new algorithm produces source and sink
fields, at the given resolution, which transform appropriately under arbitrary
Euclidean transformations of the input image. In contrast, in all previous contour
completion algorithms, the degree of failure of Euclidean invariance is highly
dependent on the resolution of the grid, and can be quite large relative to the
grid resolution.

The final step in our shift-twist invariant algorithm is to compute the com-
pletion field (the product of the source and sink fields) in a shiftable-twistable
basis. The particular basis used to represent completion fields is the same as the
one used to represent the source and sink fields, except that the variance of the
Gaussian basis functions in R2 needs to be halved. The need to use a slightly
different basis to represent completion fields is not biologically implausible, since
the experimental evidence described in Section 2 suggests that the neural locus
of the source and sink fields could be V1, while completion fields are more likely
located in V2.

6 The Solution of the Fokker-Planck Equation

In this section we derive a shift-twist invariant linear transformation, c(t+∆t) =
(A◦D)c(t), of the coefficient vector which evolves the Fokker-Planck equation in
a shiftable-twistable basis. The derivation holds for any shiftable-twistable basis
constructed from shiftable-twistable functions of the form, Ψω(x, θ) = ψ(x)eiωθ,
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for some function, ψ(x). Since the transformation, A◦D, will only involve inter-
actions between functions, ψ(x), at different positions k∆, and not at different
scales or orientations, the basis functions and coefficients will be denoted by Ψk,ω

and ck,ω(t) respectively.7

To derive an expression,

c�,η(t +∆t) =
∑

k,ω A�,η ;k,ω(∆t) ck,ω(t) , (6.1)

for the advection transformation, A, in the basis, Ψk,ω, we exploit the fact that
spatial advection can be done perfectly using shiftable basis functions, ψk(x), in
R2, and the continuous variable, θ ∈ S1. Suppose that P is given in the form,

P (x, θ; t) =
∑

k,ω ck,ω(t) ψk(x) eiωθ =
∑

k čk,θ(t) ψk(x) , (6.2)

where č(t) is related to c(t) by the standard synthesis formula for Fourier series,
čk,θ =

∑
ω ck,ωeiωθ, which we denote by č = F−1c. Then the translation of P in

direction, θ, at unit speed, for time, ∆t, is given by

P (x, θ ; t +∆t) = P (x − ∆t[cos θ, sin θ]T, θ ; t) (6.3)

=
∑

k

čk,θ(t) ψk(x − ∆t[cos θ, sin θ]T) , (6.4)

where the second equation follows from equation (6.2). The shiftability of ψ then
implies that

č�,θ(t +∆t) =
∑

k Ǎ�,θ;k,θ(∆t) čk,θ(t) , (6.5)

where

Ǎ�,θ;k,θ(∆t) = b�−k(∆t[cos θ, sin θ]T) . (6.6)

Finally, the advection transformation, A, in the basis, Ψk,ω, is given by the
similarity transformation, A = FǍF−1, where F denotes the standard analysis
formula for Fourier series, (Ff)(ω) = 1

2π

∫ 2π

0 f(θ)e−iωθdθ. Since c = Fč we have
the following result.

Theorem 1. In the basis, Ψk,ω, the advection transformation, A, is given by

c�,η(t +∆t) =
∑

k,ω b̂�−k,η−ω(∆t) ck,ω(t) , (6.7)

where

b̂k,η(∆t) = 1
2π

∫ 2π

0 bk(∆t[cos θ, sin θ]T) e−iηθ dθ . (6.8)

In particular, the transformation, A, is shift-twist invariant and is a convolution
operator on the vector space of coefficients, ck,ω.
7 Since we are using Fourier series in θ the transformation, D, can be implemented
in a shift-twist invariant manner by applying a standard finite differencing scheme
to the coefficients.
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section

source

sink

Fig. 3. The geometry of the straight line completion field experiment (left). Graph
(right) of the mean along a section normal to the straight line completion field as a
function of the direction, φ, for our new algorithm (dashed line) and for the algorithm
of [22] (solid line)

Theorem 1 implies that the computation of source and sink fields can be
performed in a recurrent neural network using a fixed set of units as described
in [22]. Since the advection transformation, A, is a convolution operator on the
space of coefficients, for efficiency’s sake we implemented both A and D in the
3D Fourier domain of the coefficient vector. In this domain, A is given by a
diagonal matrix and D by a circulant tridiagonal matrix.

7 Experimental Results

We present three experiments demonstrating the Euclidean invariance of our
algorithm. In each experiment, the Gaussian-Fourier basis consisted of K = 160
translates in each spatial variable of a Gaussian (of period X = 40.0 units),
and harmonic signals of N = 92 frequencies in the angular variable, for a total
of 2.355 × 106 basis functions. Pictures of completion fields were obtained by
analytically integrating over θ and rendering the completion field on a 256×256
grid.

We compare the new algorithm with the finite differencing scheme of [22].
For the method of [22], the 40.0× 40.0× 2π space was discretized using a 256×
256 spatial grid with 36 discrete orientations, for a total of 2.359 × 106 Dirac
basis functions. The intent was to use approximately the same number of basis
functions for both algorithms. The initial conditions were represented on the grid
using tri-linear interpolation and pictures of the completion fields were obtained
by summing over the discrete angles. The same parameters were used for both
algorithms. The decay constant was τ = 4.5 and the time increment, ∆t = 0.1.
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Fig. 4. Straight line completion fields due to an initial stimulus consisting of two points
on a circle with direction, φ, normal to the circle, for φ = 0◦, 5◦, 10◦, 15◦ (left to right).
The completion fields were computed using the algorithm of [22] (top row) and using
the new algorithm (bottom row)

The diffusion parameter was σ = 0.08 for the first and second experiments and
σ = 0.14 for the third.8 In Figures 4, 5 and 6 the completion fields constructed
using the algorithm of [22] are in the top row, while those constructed using the
new algorithm are in the bottom row.

In the first experiment, we computed straight line completion fields joining
two diametrically opposed points on a circle of radius, 16.0, with initial directions
normal to the circle. That is, given an angle, φ, the initial stimulus consisted of
the two points, (±16.0 cosφ,±16.0 sinφ, φ), see Figure 3 (left). The completion
fields are shown in Figure 4, with those in the top row, computed using the
method of [22], clipped above at 2 × 10−6.

To compare the degree of Euclidean invariance of the two algorithms, we
extracted a section of each completion field along the diameter of the circle
normal to the direction of the completion field. In Figure 3 (right), we plot the
mean of each section as a function of the angle φ. The dashed line indicates
the means computed using the new algorithm, and the solid line shows the
means computed using the algorithm of [22].9 The fact that the dashed line
graph is constant provides solid evidence for the Euclidean invariance of the
new algorithm. The solid line graph demonstrates the two major sources of the
lack of Euclidean invariance in the method of [22]. First, the rapid oscillation of

8 The diffusion parameter, σ, was required to be larger in the third experiment because
of the high curvature circles in the Kanizsa triangle figure.

9 The angles, φ, were taken in 5◦ increments from 0◦ to 45◦. For illustration purposes
the φ-axis was extended to 360◦ so as to reflect the symmetry of the grid. Both
graphs were normalized to have average value one.
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Fig. 5. Completion fields due to the Ehrenstein initial stimulus in Figure 1(a) (left
column) and with the initial conditions rotated clockwise by 45◦ (right column). The
completion fields were computed using the algorithm of [22] (top) and using the new
algorithm (bottom)

period 10◦ is due to the initial conditions coming in and out of phase with the
angular grid. This 10◦ periodicity can be seen in the periodicity of the general
shape of the completion fields in the top row of Figure 4. Second, the large
spikes at 90◦ intervals are due to the anisotropic manner in which the advection
transformation was solved on the spatial grid. These large spikes correspond to
the very bright horizontal line artifacts in the first two completion fields in the
top row of Figure 4.

In the second experiment, we computed completion fields due to rotations
of the Ehrenstein initial stimulus in Figure 1(a). Pictures of the completion
fields are shown in Figure 5.10 The left column shows the completion fields
due to the Ehrenstein stimulus in Figure 1(a), while in the right column the
10 Because of the periodicity in the spatial variables, x, to avoid wrap around in this

experiment, for the new algorithm the computation was performed on a 80.0×80.0×
2π space with K = 320.
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Fig. 6. Completion fields due to the Kanizsa triangle initial stimulus in Figure 1(b)
(left column) and with the initial conditions rotated clockwise by 5◦ (right column).
The completion fields were computed using the algorithm of [22] (top) and using the
new algorithm (bottom)

initial conditions have been rotated clockwise by 45◦. The completion fields
computed using the method of [22] were clipped above at 1.25 × 10−8. For our
final experiment, we compute completion fields due to rotations and translations
of the Kanizsa Triangle stimulus in Figure 1(b). Completion fields are shown
in Figure 2, which was discussed in the Introduction, and in Figure 6. The
left column of Figure 6 shows completion fields due to the Kanizsa Triangle
in Figure 1(b). In the right column the initial conditions have been rotated
clockwise by 5◦. The completion fields computed using the method of [22] were
clipped above at 9 × 10−5.

The completion fields in the bottom rows of Figures 5 and 6, and in Figure 2,
demonstrate the Euclidean invariance of our new algorithm. This is in marked
contrast with the obvious lack of Euclidean invariance in the completion fields
in the top rows of Figures 5 and 6. The visible straight line artifacts in these
completion fields, which are oriented along the coordinate axes, are due to the
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anisotropic nature of the advection process in the algorithm of [22], and (to a
lesser extent), to the way in which the initial conditions were represented on the
grid.

8 Conclusion

An important initial stage in the analysis of a scene requires completion of
the boundaries of partially occluded objects. Williams and Jacobs introduced
the notion of the stochastic completion field which measures the probability dis-
tribution of completed boundary shapes in a given scene. In this article we have
described a new, parallel, algorithm for computing stochastic completion fields.
As is required of any computational model of human visual information proces-
sing, our algorithm attempts to reconcile the apparent contradiction between
the Euclidean invariance of human early visual computations on the one hand,
and the observed sparseness of the discrete spatial sampling of the visual field
by primary and secondary visual cortex on the other hand. The new algorithm
reconciles these two contradictions by performing the computation in a basis
of separable functions with spatial components similar to the receptive fields of
simple cells in primary visual cortex. In particular, the Euclidean invariance of
the computation is achieved by exploiting the shiftability and twistability of the
basis functions.

In this paper, we have described three basic results. First, we have generalized
Simoncelli et al.’s notion of shiftability and steerability in R2 to a more general
notion of shiftability and twistability in R2 × S1. The notion of shiftability and
twistability mirrors the coupling between the advection and diffusion terms in
the Fokker-Planck equation, and at a deeper level, basic symmetries in the un-
derlying random process characterizing the distribution of completion shapes.
Second, we described a new method for numerical solution of the Fokker-Planck
equation in a shiftable-twistable basis. Finally, we used this solution to compute
stochastic completion fields, and demonstrated, both theoretically and experi-
mentally, the invariance of our computation under translations and rotations of
the input pattern.
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