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Abstract

Recent work showed how an expression in a functional pro-
gramming language can be compiled into a massively redun-
dant asynchronous spatial computation called a distributed
virtual machine. A DVM is comprised of bytecodes reified
as actors undergoing diffusion and communicating via mes-
sages containing encapsulated virtual machine states. Sig-
nificantly, it was shown that both the efficiency and the ro-
bustness of expression evaluation by DVM increase with re-
dundancy. In the present work, spatial computations that be-
come more efficient and robust over time are described. They
accomplish this by self-replication, which increases the re-
dundancy of the elements of which they are comprised. The
first and simplest of these self-replicating DVMs copies it-
self by reflection; it reads itself from a contiguous range of
memory. The remainder are quines. As such, they reproduce
by translating and transcribing self-descriptions. The nature
of the self-descriptions and of the translation and transcrip-
tion processes differ in each case. The most complex self-
replicating DVM described represents a fundamentally new
kind of artificial organism—a machine language program rei-
fied as a spatial computation that reproduces by compiling its
own source-code.

Introduction

In a recent article, |Ackley| (2013)) argues that future ro-
bust computing systems will be defined in terms of bespoke
physics interfaces built on top of a physical substrate resem-
bling an asynchronous cellular automaton (ACA); space and
time in indefinitely scalable computations will be coexten-
sive with physical space and time. von Neumann, who in-
vented the random access stored program computer (RASP),
showed us that programs can be data. Yet conventionally,
machines are active and data is passive; machines transform
data. In this paper, we propose that computations formu-
lated in terms of a bespoke physics are literally machines
and demonstrate how self-replicating programs written in a
Lisp-like language can be compiled into such computations.

A range of computational substrates have been used to
host self-replicating programs in artificial life research or
might play this role in the future. The distributed virtual
machine (DVM) developed by the author as a method for the
robust evaluation of expressions is in the second category

Table 1: Computational substrates for artificial life.

control sites bits/site r/w dist.
CA C NxN o(1) o(1)
ACA D NxN o(1) o(1)
DVM D NxXN>M O(logM) o)
Avida C NxN O(P) +QlogP P
Tierra C P O(1) +QlogP P
RASP C 1 MlogM M

(Williams|, [2012). See Table[T}

Notwithstanding their historical importance, CAs are
likely to be supplanted by ACAs for two reasons. First, their
dependence on a global clock violates Ackley’s requirement
that a bespoke physics be indefinitely scalable. Second, it
is well known that for every CA there exists an ACA which
emulates it (Nakamural, |1974; [Nehaniv, 2004). Less well
known is the fact that emulations of this type can be done
with negligible slowdown (Berman and Simonl, |1988).

Tierra (Ray, |1994) and Avida (Adami et al., |1994) ex-
emplify the artificial life approach to evolutionary computa-
tion. Both systems are based on a virtual machine (VM) that
has two distinct address spaces. The first (used to hold pro-
grams) consists of P words of size O(1) bits while the second
(used to hold a stack of program memory addresses at run-
time) consists of Q words of size log P bits. In contrast, the
DVM and RASP both have a single address space consisting
of M words of size log M bits; the major difference between
the DVM and RASP is that the DVM’s memory is spatially
distributed over an N x N grid.

Moreover, like the RASP, the Tierra and Avida VMs are
random access, with instructions that can read and write val-
ues anywhere in a memory of size P. In contrast, a DVM can
be implemented on an ACA substrate with only O(logM)
bits per site and with a read/write distance which is O(1).

Finally, the table reveals an important difference between
Tierra and Avida, namely that all organisms occupy a single
address space in Tierra but are segregated in separate ad-
dress spaces in Avida. The difference is not minor—in Tierra
the competition for program memory P is zero sum while in
Avida it isn’t. However, organisms which evolve more effi-
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cient methods of self-replication in terms of stack memory
Q go unrewarded in both systems. In contrast, in a DVM, the
competition for heap-allocated space M (no matter its use)
among all organisms sharing the N X N grid is zero sum.

A Simple Programming Language

The language we used to construct our self-replicating
DVMs is a pure functional subset of Scheme which we call
Skeme. Because it is purely functional, define, which as-
sociates values with names in a global environment using
mutation, and letrec, which also uses mutation, have been
excluded. The global environment itself is eliminated by
making primitive functions constants. For simplicity, clo-
sures are restricted to one argument; user defined functions
with more than one argument must be written in a curried
style. This simplifies the representation of the lexical en-
vironment which is used at runtime by making all variable
references integer offsets into a flat environment stack; these
are termed de Bruijn indices and can be used instead of sym-
bols to represent bound variables (De Bruijn, |1972).

One feature peculiar to Skeme is the special-form,
lambda+. When a closure is created by lambda+, the clo-
sure’s address is added to the front of the enclosed envi-
ronment; the de Bruijn index for this address can then be
used for recursive function calls. For example, the follow-
ing function computes factorial:

(lambda+ (if (= %0 0) 1 (x %0 (%1 (= %0 1)))))

where %0 is a reference to the closure’s argument and %1 is
a reference to the closure’s address.

Evaluation of Expressions by Virtual Machines

The process of evaluating expressions by compiling them
into bytecodes which are executed on a VM was first de-
scribed by [Landin| (1964) for Lisp and was generalized for
Scheme by |Dybvig (1987). Because it plays an important
role in our work, it is worth examining Dybvig’s model for
Scheme evaluation in some detail.

Evaluating an expression requires saving the current eval-
uation context onto a stack, then recursively evaluating
subexpressions and pushing the resulting values onto a sec-
ond stack. The second stack is then reduced by applying
either a primitive function or a closure to the values it con-
tains. Afterwards, the first stack is popped, restoring the
prior evaluation context. Expressions are compiled into trees
of bytecodes which perform these operations when the byte-
codes are interpreted. For book keeping during this process,
Dybvig’s VM requires five registers. See Figure[I]

With the exception of the accumulator, which can point to
an expression of any type, and the program counter, which
points to a position in the tree of bytecodes, each of the reg-
isters in the VM points to a heap allocated data structure
comprised of pairs; the environment register points to a stack
representing definitions in enclosing lexical scopes, the ar-
guments register points to the stack of values which a func-
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Figure 1: Virtual machine for evaluating compiled Skeme
expressions showing its registers and associated heap-
allocated data structures (based on Dybvig| (1987)).

tion (or closure) is applied to, and the frames register points
to a stack of suspended evaluation contexts.

Evaluation occurs as the contents of these registers are
transformed by the interpretation of the bytecodes. For ex-
ample, the argument bytecode pushes the value of an eval-
uated subexpression onto the argument stack. Other byte-
codes alter the frame stack. For example, the frame bytecode
pushes an evaluation context onto the frame stack, while the
apply bytecodes pops it after applying a primitive function
(or a closure) to the values found in the argument stack. Still
other bytecodes load the accumulator. For example, the con-
stant bytecode loads it with a constant, while the refer byte-
code loads it with a value found in the environment stack.

Reified Actor Models

Actors are universal primitives for constructing concurrent
computations introduced by Hewitt et al.|(1973). In essence,
an actor is a lightweight process with a unique address which
can send and receive messages to and from other actors. In
response to receiving a message, and (depending on the mes-
sage’s contents) an actor can send a finite number of mes-
sages of its own; create a finite number of new actors; and
change its internal state so that its future behavior is differ-
ent. All of these things happen asynchronously.

Although as originally conceived, actor models are not
reified, it is possible to create a reified actor model. In a
reified actor model, all actors have unique positions on a
2D grid. Actors possess a finite number of states and can
sense and change the positions and states of actors in their
n x n neighborhoods. Significantly, actors can create bonds
with other actors; bonds are relative spatial addresses which
are short, symmetric, and automatically updated as actors
undergo random independent motion or diffusion. Since
bonds are short, they restrict the motion of an actor which
possesses them. However, they also ensure that two actors
which must communicate can always do so.
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Figure 2: Conventional virtual machine (top) and distributed
virtual machine (bottom). In the DVM, the registers are en-
capsulated in a message called a continuation that is passed
between bytecodes reified as actors. Each actor is a finite
state machine that transforms the continuation in manner
specific to its type then passes it to the next bytecode in the
program. Control is distributed not centralized.

Distributed Virtual Machines

By giving them addresses and types, reified actors can be
used to represent heap-allocated objects. In particular, they
can be used to represent any of the datatypes permissible
in Skeme including numbers, booleans, primitive functions,
de Bruijn indices, closures and pairs. However, they can
also represent the bytecodes of a compiled Skeme program.
We call the set of bytecode actors representing a compiled
program, a distributed virtual machine (DVM). Like other
objects, a bytecode actor will respond to a get message by
returning its value, but unlike actors representing other ob-
jects, it can also send and receive encapsulated virtual ma-
chine states, or continuations. Upon receipt of a continua-
tion, a bytecode actor transforms it in a manner specific to
its type, then passes it on to the next bytecode actor in the
program, and so on, until the continuation reaches a halt
bytecode. In contrast to a conventional VM, where all con-
trol is centralized, control in a DVM is distributed among the
bytecodes which comprise it. Furthermore, because Skeme
is purely functional, multiple instances of each object and
multiple execution threads (continuations) can coexist with-
out inconsistency in the same heap.

Recall that applying a function requires the construction
of a stack of evaluated subexpressions. In the simplest case,
these subexpressions are constants, and the stack is con-
structed by executing the constant and argument bytecodes
in alternation. This two bytecode sequence is used to illus-
trate the operation of a DVM in more detail.

A bytecode actor of type constant in the locked state loads
its accumulator with the address of its operand and enters the

compile ((lambda+ ... ) 1)

<:| or

(root? (copy (get %0))) (%1 (succ %0))

%0 argument
constant constant
constant

apply apply copy

return

apply

apply suce apply %1

Figure 3: A self-replicating object code program consisting
of 37 bytecodes and operands that copies itself by reflection
(left) and its Skeme source code (right).

continue state. When an actor in the continue state sees its
child in the bytecode tree within its neighborhood, it over-
writes the child actor’s registers with the contents of its own
registers, sets the child actor’s state to locked, and returns to
the ready state.

The behavior of a bytecode actor of type argument in the
locked state is more complicated. It must push its accumu-
lator onto the argument stack, which is comprised of heap-
allocated pairs. Since this requires allocating a new pair, it
remains in the put state until it sees an adjacent empty site
in its neighborhood. After creating the new pair actor on the
empty site, it increments the register representing the last al-
located heap address (for the execution thread) and enters
the continue state. See Figure 2]

Self-Replication by Reflection

Since machine language programs are just sequences of val-
ues stored in memory, and since instruction sets include
instructions which read from and write to memory, it is
straightforward to construct a machine language program
which copies itself using reflection. Primitive functions pro-
viding comparable functionality can be added to Skeme.
The most important of these are: copy which makes a copy
of a heap-allocated object; root? which returns true if its
argument is the last heap-allocated object in an object code
program and false otherwise; and get, which given an inte-
ger address, returns the heap-allocated object with that ad-
dress. For convenience, we also add a primitive function
succ which returns the successor of its integer argument.
Using these functions, it is possible to define a Skeme ex-
pression which will copy a set of heap-allocated objects rep-
resenting the bytecodes and operands of an object code pro-
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Figure 4: Redundancy versus time for reflection-based
SRDVM using diffusion for message passing and best fit
function of the form f(x) = (x/a)? + 1. The average is over
ten runs. Grid size was 256 x 256. Error bars show =¢. The
computation becomes more efficient and robust over time.

gram stored in a contiguous range of addresses. This ex-
pression compiles into an object code program containing
37 bytecodes and operands (Figure [3). When reified as ac-
tors undergoing diffusion, the bytecodes and operands of the
compiled program form a self-replicating DVM.

Execution begins when the root actor (the actor with
largest address among the bytecodes which comprise the
program) is sent an initial continuation. When execution
ends, two new continuations are launched. To accomplish
this, a behavior was added to the actor representing the copy
primitive function. When the root actor is copied (the penul-
timate step in execution), both the root and the copy are sent
initial continuations. Because the parent continuation dies a
short time later (when it reaches the halt bytecode), the net
increase in continuations is one. This ensures that the num-
ber of execution threads equals the redundancy increase due
to self-replication. However, self-replication alone cannot
entirely account for the rate of increase in redundancy ob-
served in Figure ] Part of the increase is due to the fact that
message passing latency in a DVM decreases as redundancy
increases (Williams| [2012). Since self-replication time de-
creases with latency, latency decreases as redundancy in-
creases, and redundancy is increased by self-replication, the
process is self-reinforcing. In effect, the actors compris-
ing an SRDVM form an autocatalytic set; as the reactant
concentration (redundancy) increases, the reaction rate (ef-
ficiency) increases correspondingly.

Robust Self-Assembly of Address Sorted Loops

In this section we describe a method for further increasing

the efficiency of message passing in DVMs. This is accom-

plished by representing the heap as an address sorted loop.
In order to implement address sorted loops, the actors
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Figure 5: Times required for self-assembly (red) and exe-
cution (green) for reflection-based SRDVM as a function of
population and best fit functions of the forms f(x) = a/x and
g(x) = b. The plotted times are for a single frame bytecode
accumulated over ten runs. Grid size was 128 x 128. Self-
assembly time decreases with increasing population while
execution time remains constant.

which comprise DVMs are augmented in several ways.
First, they are given a pair of bonds; the next bond links
an actor to the actor which follows it in the loop, while the
prev bond links it to the actor which precedes it. Second,
every actor is given three additional address registers. The
first two (max and min) hold the maximum and minimum
addresses in the loop to which the actor belongs; the third is
a backup copy of the actor’s own address.

The loop is maintained in address sorted order by a low-
level behavior implemented by all actors, namely, if an ac-
tor’s address is greater than the address of the next actor (or
less than the address of the prev actor) then the two actors
swap positions in the loop. When two actors are swapped,
all type and state information is copied from one position
to another; bonds are unaffected. The address sorting be-
havior is modified for the pair of actors with minimum and
maximum addresses. These actors do not swap positions but
instead serve as anchors for the loop.

A second low-level behavior maintains the maximum and
minimum address values. This is accomplished by setting
an actor’s max value equal to the maximum of its neighbors’
max values (a similar process updates min).

Address sorted loops self-assemble by a process which
adds one actor at a time in order of increasing address. The
self-assembly process is initiated when the actor with ad-
dress one sees the actor with address two in its neighbor-
hood and forms a length two loop by creating a pair of prev
and next bonds. The min and max fields of both actors are
assigned the values one and two.

When any actor in a loop sees an unbonded actor with
address equal to max plus one in its neighborhood, it splices
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that actor into the loop; the new actor is moved to a position
midway between the actor doing the splicing and the actor
which follows (if there is not enough room the action fails).
Appropriate surgeries are then performed on the actor’s next
bond (and the prev bond of the actor which follows). In this
way, the new actor is incorporated into the loop. The low-
level sorting behavior possessed by all actors then rapidly
moves it to its correct position.

The current max address value is also rapidly updated.
Due to the non-zero latency required to update the max ad-
dress value, it occasionally happens that two actors with the
same address are added to a loop. To deal with this con-
tingency, yet another low-level behavior is used to eject one
of any two adjacent actors with duplicate backup addresses.
This can only happen if the gap which would result from the
ejection is short enough to be spanned by a bond; if not, the
action fails.

Although we experimented with a more complex method
of loop self-assembly involving merging of loops with over-
lapping address ranges followed by ejection of duplicates,
the simple self-assembly method of adding one actor at a
time turned out to be the most efficient. This is due to the
fact that the net diffusion constant of a set of actors linked
by bonds rapidly decreases with the size of the set. By com-
parison, the diffusion constant of an unbonded actor is enor-
mous. In the simple self-assembly method, the length of the
loop is analogous to the surface area of a growing sponge.
Like a sponge, it is immobile. However, as the loop grows,
it becomes more efficient at collecting an actor with the ad-
dress it needs to extend itself; the self-assembly process ac-
tually speeds up. The time (measured in average number of
updates per site) required for loop self-assembly decreases
as redundancy increases (Figure [3).

The DVM begins execution when the root actor is spliced
into the loop. Message passing is accomplished by a simple
process in which the sender temporarily changes its address
to the address of the recipient. The low-level sorting behav-
ior then moves the sender to a position in the loop adjacent to
the recipient, at which point, the message is delivered. After-
wards, the sender restores its own address (using its backup
copy) and the low-level sorting behavior rapidly returns it to
its original position.

Since swapping two actors joined by a bond does not de-
pend on the relative positions of the actors in the grid (unlike
splicing and ejection which fail if the bonds which would re-
sult are too short or too long), the message passing process
is relatively efficient, taking time proportional to the length
of the loop. Experiments will show that the speedup relative
to diffusion-based message passing is significant.

Recall that evaluation of a Skeme expression requires
three different stacks comprised of pairs that are stored in
the heap. In fact, these pairs, which are created by bytecode
actors (not by the cons primitive function) form the bulk of
the heap at any given time. Other transient objects, e.g.,
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Figure 6: Average loop size versus time for reflection-based
SRDVM with (green) and without (red) garbage collection
and best fit functions of the form f(x) = \/ax+37. The
average is over ten runs. Grid size was 128 x 128. Error
bars show +10 o (for clarity). The SRDVM with garbage
collection replicates five times faster.

closures, are also created during evaluation. The fact that
message passing latency is proportional to heap size sug-
gests that an aggressive incremental garbage collection pro-
cess that ejects transient objects from loops when they are
no longer needed would yield significant increases in evalu-
ation efficiency.

As part of the implementation of the garbage collection
process, the heap’s address range is divided into two parts.
The first part, consisting of positive addresses, contains per-
manent objects that form the bytecodes and operands of the
mother and daughter object code programs. The second part,
consisting of negative addresses, contains transient objects
allocated by the DVM during execution. Unbonded actors
with negative addresses immediately delete themselves.

When an actor representing a heap-allocated object is cre-
ated, it is spliced into the loop by bisecting the next bond
of its creator. Actors created by most primitive functions
have positive addresses; actors created by bytecodes (pairs
forming the VM’s three stacks and closures) have negative
addresses. Upon creation, actors with positive addresses are
ejected since they duplicate actors already in the DVM; ac-
tors with negative addresses are retained. Consequently, dur-
ing execution, the size of the positive part of the heap stays
constant, while the negative part steadily grows. After ejec-
tion, actors with positive addresses self-assemble into new
address sorted daughter loops.

Recall that the VM’s frame and argument stacks are
popped after the application of a primitive function or clo-
sure. Whenever a stack is popped, the pairs that comprised
the popped record are marked for ejection. Experiments
show that this process yields significant increases in eval-
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Figure 7: Reflection-based self-replicating program (left)
copies itself by exploiting program-data equivalence. Quine
self-replicating program (center) with object code genome
(blue) and phenome (red). Quine self-replicating program
(right) with source code genome (green) and object code
phenome (red).

uation efficiency. Indeed, in the case of the reflection-based
SRDVM, both the maximum loop size and execution time
(measured in average number of updates per site) are five
times larger without garbage collection. See Figure [0

A final behavior only plays a role at the end of execution:
when an actor is missing its next bond, it deletes its prev
bond (and vice versa). Since the halt bytecode deletes its
next bond when it receives a continuation, loops rapidly dis-
assemble when the DVMs they host finish executing. Un-
bonded actors with positive addresses (the bytecodes and
operands formerly comprising the mother program) are free
to join self-assembling daughter programs; unbounded ac-
tors with negative addresses immediately delete themselves.

The life-cycle can be rendered graphically (Williams,
2014). To minimize clutter, only bonds are displayed. The
loops’ address ranges are mapped to hue so that the effect
of the sorting behavior can be verified. The thing that is
most striking is the dynamism: everything is moving; noth-
ing is static. SRDVMs look like crumpled rainbows, rapidly
assuming different conformations as the actors comprising
them undergo diffusion. Continuations move clockwise and
counterclockwise inside address-sorted loops that steadily
grow, then quickly dissassemble when execution ends.

Self-Replication by Quines

We previously extended Skeme by adding functions that en-
abled a program to copy heap-allocated objects. In order to
define an expression that can recursively copy a binary tree
representation of object code, we now extend Skeme with
a set of functions that make instances of bytecode types,
e.g., the primitive function make-frame to make bytecodes of
type frame. For convenience, we also introduce a primitive
function, make, which when applied to a bytecode, returns
the primitive function that makes instances of that type. To-
gether, these functions make it possible to define an expres-
sion that recursively copies object code. One might wonder
whether this expression could be compiled and applied to it-
self, yielding a self-replicating object code program. Alas,
this is not possible, since it would require that the program

make-constant

A (compile (quote (make-constant ... )))
make-argument
make-argument
((lambda+ .
make-close make-close
(pair? %0) (copy %0)

((make %0) (%1 (car %0)) (%1 (cdr %0)))
make-apply

make-apply
((lambda+ ... ) %0)

(pair? 0/04\“’”3' %0)

((make %0) (%1 (car %0)) (%1 (cdr %0)))

(compile (quote (make-constant ... )))
make-argument \A

make-close \\\
(pair? °/ 0) (copy %0)

((make %0) (%1 (car %0)) (%1 (cdr %0)))

Iambda+ /oO)

make-apply

(Iambda+ °/ 0)

\\

(pair? /0) ‘ (COPV %0)
((make %0) (%1 (car %0)) (%1 (cdr %0)))
Figure 8: Skeme source code that constructs a self-
replicating object code program consisting of 327 bytecodes
and operands. Both phenome (red) and genome (blue) are
object code programs. Translation and transcription are im-
plemented by identical expressions that copy object code.

contain a cycle and cycles cannot be created in pure func-
tional code; Moreover, even if a cycle could be created,
there would be no way for the program to know when to
stop copying; a more subtle approach is required (Figure [7)).

A quine is a program that prints itself. All quines con-
sist of two parts. Conventionally called program and data,
they may be thought of as phenome and genome. All quines
work the same way. Active program transforms passive
data in two ways producing new instances of both program
and data. Equivalently, the mother quine’s genome is tran-
scribed and translated yielding the daughter quine’s genome
and phenome. The forms of the genome and phenome, and
the nature of the translation and transcription processes, dif-
fer from quine to quine. [[Hasegawa and McMullin| (2013)
recently defined a quine inside Avida. To our knowledge,
this is the first time this has been done.]

Quines can be written in any programming language but
Skeme’s list-based syntax, together with quotation, make it
easy to write an especially short and simple one. In the fol-
lowing Skeme quine, phenome is an expression that eval-
uates to a closure that appends a value to the same value
quoted; genome is just phenome quoted. Finally, phenome
is applied to genome:

((lambda (list %0 (list quote %0)))
(quote (lambda (list %0 (list quote %0)))))

It is possible to write an object code quine that works
much the same way. In place of the special-forms lambda
and quote, the object code quine uses the bytecodes close
and constant. Instead of building a function application
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make-constant (compile (quote ((lambda ... ) ...))

/\ make-constant \
make-argument

\ make-argument \

make-close

%0
((lambda+ .... ) %0)

make-close if
(pair? %0)

((make %0) (%1 (car %0)) (%1 (cdr %0)))

(copy %0)
%0
make-apply

make-apply

(compile (quote ((lambda ... ) ...))

make-constant

%0

make-argument
\ ((lambda+ ... ) %0)

N
~ if .
(pair? %0) ‘ (copy %0)

((make %0) (%1 (car %0)) (%1 (cdr %0)))

make-close

%0
make-apply

Figure 9: The fact that the translation and transcription pro-
cesses both return the copied genome can be exploited by
introducing a name for this value with a lambda expression.
The result is a more efficient self-replicating program.

in source code with [list, the equivalent is built in object
code using make-argument and make-apply. Finally, while
the source code quine doesn’t actually copy its components
(since references suffice for printing) the object code quine
must (since the goal is self-replication). The self-similarity
of the object code quine can be appreciated by inspecting
the Skeme source code that is used to build it (Figure [§).
The four bytecodes that comprise the quine’s backbone cre-
ate a closure and apply it to a quoted copy of its own body.
These actions build object code that will itself (when exe-
cuted) create and apply a closure to a quoted copy of its own
body; that is, will construct another copy of the quine.

The quine thus constructed contains 327 bytecodes and
operands. However, it is needlessly inefficient since it copies
its object code genome twice using identical translation and
transcription processes. It can be made significantly smaller
and more efficient by introducing a name for the value of the
copied genome with a lambda expression (Figure 0). This
quine copies its genome once but uses the copy twice (once
as genome and once as phenome) and contains only 107
bytecodes and operands. Its replication rate is contrasted
with that of the reflection-based SRDVM in Figure [10]

A self-hosting compiler compiles the same language it is
written in. Consequently, it can compile itself. It is possi-
ble to define a very short self-hosting compiler ¢ for Skeme
(Figure[TT). Inserting a copy of ¢ into the unquoted half of
the Skeme quine (phenome) so that it compiles its result and
mirroring this change in the quoted half (genome) yields

( (lambda
(quote

(@ (list %0 (list quote %0))))
(lambda (@ (list %0 (list quote %0))))))

which, although not a quine itself, returns a quine when
evaluated; this quine is not a source code fixed-point of
the Skeme interpreter but an object code fixed-point of the
Skeme VM. In effect, it is a quine in a low-level language

25 T T T T T
copier (size = 37) —+—
f(x) = (x/0.45)**6.7 + 1
quine (size = 107)
g(x) = (x/1.46)*4.2 + 1

population

0 - ! ! ! ! !
0 0.5 1 1.5 2 25 3

millions of updates

Figure 10: Average population versus time for 37 bytecode
reflection-based SRDVM (red) and 107 bytecode quine-
based SRDVM (green) and best fit functions of the form
(x/a)? + 1. The averages are over ten runs. Grid size was
256 x 256. Error bars show 0.

(phenome) that reproduces by compiling (translation) and
copying (transcription) a compressed self-description writ-
ten in a high-level language (genome). When reified, the
SRDVM consists of 990 actors representing a mixture of
source and object code. It has been verified that it repli-
cates perfectly across generations and simple statistics in-
cluding maximum heap and loop sizes, and execution time
(measured in average number of updates per site) have been
determined for it and for the other SRDVMs. See Table

Table 2: A comparison of four SRDVMs.

code size | max heap size | max loop size | execution time
37 7.2 x 102 1.3x 10% 2.7 x 10*
107 1.7x10° 3.7 x 102 27 x10°
327 5.5%10° 1.1x 10 2.2 % 10°
990 1.8 x 107 5.0x10° 2.5%x 107
Future Work

Before SRDVMs can be used in the artificial life approach to
evolutionary computation several unsolved problems must
be addressed. These include the isolation of genomes, re-
production with variation, and self-replication efficiency.

Membranes were essential to the evolution of complex
life. Without membranes to concentrate reactants and isolate
genomes, neither metabolism nor evolution would be possi-
ble. The address sorted loops described here concentrate
reactants quite effectively, but do not (currently) provide a
mechanism for the isolation of genomes.

If SRDVMs are to evolve, then they must not only isolate
their genomes, they must reproduce with variation. Artificial
organisms in Tierra and Avida do this because the host sys-
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((lambda+ (lambda+ ... )) (make-halt))

if

(pair? %0)
((lambda ((lambda ... ) (cdr %1))) (car %0)) "
I
if (index? %0) (make-constant %0 %2)
(eq? %1 if) ((%5 (make-test (make-refer %0 %2)
(%3 (car (cdr %0))) if
X (%3 (car (cdr (cdr %0))))))
(car %0))
(eq? %1lambda)  (make-close
) ((%5 (make-return)) X
. i (car %0)) if
(eq? %1 quote) %4) X
if (eq? %1 lambda+) (make-klose
%5 (make-return
(null? %0) (gc;, .5/00)) )
%4)
(make-frame ((lambda ... )
%4 ((%5 (make-argument ((%5 (make-apply)) %1)))
((%5 (make-apply)) (car %0)))
%1)
if
(make-constant ? o
((lambda+ ....) (car %0)) (null? (cdr %1))
%4)
if i
(pair? %0) (copy %0) (eq? (make-return) (make-frame
(cons (%1 (car %0)) (%1 (cdr %0))) %5) %5
if ((%6 (make-argument %0))
(eq? (make-return) (make-frame %5 %0) (car (cdr %1)))
%5)
%0 ((%6 (make-argument %0))

(car (cdr %1)))

Figure 11: Self-hosting compiler for Skeme can be used
to construct an SRDVM comprised of 990 actors of mixed
source and object code. The compiler defines the genotype-
phenotype mapping of a new kind of artificial organism with
source code genome and object code phenome.

tems introduce random changes in the instructions of hosted
organisms. |[Spector and Robinson| (2002) describe a com-
pelling alternative approach where artificial organisms not
only manage their own replication, but also the mutation of
their genomes. For SRDVMs to reproduce with variation in
this way, a set of mutation operators needs to be defined in
Skeme and these operators need to be employed in the sub-
tree of the compiler that copies the genome.

The last problem that must be solved is efficiency. There
is nearly a thousandfold difference between the shortest and
longest execution times in Table 2] Given that a DVM re-
quires O(M?) time to build a heap of size M, this differ-
ence is understandable. Nevertheless, before they can be
useful, SRDVMs must be efficient, and although O(1) mes-
sage passing latency is not possible in a machine that isn’t
random access, we believe that O(\/M) is, and this would be
a significant improvement.

Conclusion

The breadth of research in artificial life ranges from genetic
programming in Lisp to the engineering of biochemical pro-
tocells. It might seem that the gulf between these topics is
so large that it will never be spanned. Yet many stepping
stones already exist. The concept of fixed-points in a chem-
ical lambda calculus described by Fontana and Buss|(1994)
bridged part of the gulf in the author’s own mind several
years ago and inspired this paper. By introducing DVMs to
the artificial life community and demonstrating an SRDVM
that replicates by compiling its own source code, this pa-
per attempts to place another stepping stone in the gulf. It

does so by suggesting that the artificial life approach to evo-
lutionary computation exemplified by systems like Tierra
and Avida might be pursued using self-replicating programs
written in high-level languages hosted on a computational
substrate that has the dual virtues of making competition be-
tween programs for all uses of memory zero sum and being
indefinitely scalable.
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