
Towards Complex Artificial Life

Lance R. Williams1

1Department of Computer Science, University of New Mexico, Albuquerque, NM 87131
williams@cs.unm.edu

Abstract

An object-oriented combinator chemistry was used to con-
struct an artificial organism with a system architecture pos-
sessing characteristics necessary for organisms to evolve into
more complex forms. This architecture supports modularity
by providing a mechanism for the construction of executable
modules called methods that can be duplicated and special-
ized to increase complexity. At the same time, its support for
concurrency provides the flexibility in execution order neces-
sary for redundancy, degeneracy and parallelism to mitigate
increased replication costs. The organism is a moving, self-
replicating, spatially distributed assembly of elemental com-
binators called a roving pile. The pile hosts an asynchronous
message passing computation implemented by parallel sub-
processes encoded by genes distributed through out the pile
like the plasmids of a bacterial cell.

Introduction
Since its beginning, the field of artificial life has been con-
cerned with the twin problems of the origin of life on Earth
and its evolution into forms of increasing complexity. Be-
cause these problems are among the most important in sci-
ence, the idea that experiments with artificial chemistries,
organisms, and ecologies hosted on computers might substi-
tute for direct observation of events from the lost history of
the early Earth remains extremely seductive. Still, progress
has been slower than many might have expected, and arti-
ficial life’s (arguably) most compelling demonstrations are
already several decades old. It follows that a new approach
is needed. In this paper we describe an artificial organ-
ism constructed using an object-oriented combinator chem-
istry. While more complex than any previously described,
it demonstrably possesses a system architecture compatible
with its evolution into still more complex forms.

Phylogenetic reconstructions indicate that all life on Earth
descends from a last universal common ancestor (LUCA)
that existed as early as 3.8 billion years ago (Glansdorff
et al., 2008). This organism was probably a chemical au-
totroph living near a geothermal vent. Notwithstanding its
likely inability to synthesize amino acids, it was already
quite complex, containing an estimated 355 genes. Signifi-
cantly, like all of its descendants, it possessed the molecular

machinery needed to transcribe DNA into RNA, and trans-
late RNA into proteins. Fossil stromatolites show that by
3.7 billion years ago, the tree of life rooted at LUCA had
branched many times, yielding a diversity of more complex
organisms occupying a range of niches in complex ecologies
(Nutman et al., 2016).

Although the mystery of its origin is paramount among
the open questions in our field, the question of how an or-
ganism of LUCA’s non-negligible complexity evolved into
a diversity of still more complex forms may be more im-
mediately amenable to investigation using the artificial life
approach. In software engineering terms, did LUCA possess
a system architecture that facilitated its further evolution? If
so, what were the essential characteristics of this architec-
ture? Could an artificial organism with an architecture pos-
sessing these same characteristics be designed? Would an
artificial organism so designed placed in an artificial world
where it was forced to compete with other organisms of the
same kind for resources evolve into a diverse ecology of still
more complex organisms, given enough time? We believe
that the answers to the first, third and fourth questions are all
‘yes’ and these beliefs motivate the present work. As for the
characteristics of LUCA’s system architecture that allowed
it to evolve into more complex forms, two of the most likely
are discussed in the section that follows.

Accumulation of Complexity
It has been proposed that a sustained increase in complexity
of the most complex entities of an evolving population is a
hallmark of open-ended evolution (Taylor et al., 2016). Al-
though this idea seems very compelling, it begs the question
of how complexity is defined. In this section, we assume a
specific definition for complexity and describe two classes
of mechanisms that together explain its accumulation in an-
cient lineages—the first are the source of its increases; the
second mitigate its cost.

The Kolmogorov complexity of a string is defined as the
length of the shortest program that prints it. Unfortunately,
Kolmogorov complexity’s value as a measure of the com-
plexity of artificial organisms is limited because random
strings require longer programs than non-random strings. A
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Figure 1: Modularity facilitates increases in complexity by
allowing duplication and specialization of modules. Pro-
cesses are executable modules that concurrency allows to
be executed in different orders. In a concurrent system, du-
plication of processes can increase redundancy, while du-
plication followed by specialization can increase degener-
acy. These mitigate the cost of increased complexity by in-
creasing robustness. Parallelism mitigates the cost of in-
creased complexity by decreasing the time an artificial or-
ganism needs to reproduce.

measure that discounts randomness is required. The logical
depth of a string is the time required to print it given its short-
est representation (Bennett, 1988). Because random strings
are incompressible, they are their own shortest representa-
tions, and have low logical depth.

Now consider a string that is a compressed representation
of a decompression program. When the program is applied
to the string, it prints itself. It follows that the program plus
string system is a quine with logical depth equal to its repli-
cation time. The implication is profound—if complexity is
equated with logical depth, then (absent parallelism) com-
plex organisms require more time than simpler organisms to
reproduce. It follows that complex organisms are at a disad-
vantage relative to simpler organisms in zero sum competi-
tions for resources.

Because this is a bold assertion, it’s worth noting that in
the natural world, complex organisms are not intrinsically
better at staying alive either. Indeed, the theory of con-
structive neutral evolution posits that only the variance in
complexity of organisms has increased over time; its modal
value has not (Carroll, 2001). There are innumerably more
simple organisms than complex organisms (no matter how
you count) and organisms as complex as ourselves merely
occupy the tail of a very broad distribution.1

Increases in complexity in individual lineages are intro-
duced by evolutionary “ratchets,” devices which increase
complexity in ways that cannot be reversed (Luke et al.,
2011). Although there are others, the most important ratch-
ets are duplication and specialization. By means of these
devices, complexity accumulates in lineages over time irre-
spective of whether or not it confers an adaptive advantage
(see Figure 1). Sometimes its does; more often it doesn’t.

According to this theory, complex organisms exist primar-

1“That which does not kill us makes us stranger.” — Trevor
Goodchild, Aeon Flux.

ily due to the fact that life on Earth is ancient. Generally
speaking, they do not survive by virtue of their complexity;
they survive despite it. For this reason, we believe that an ar-
tificial organism capable of open-ended evolution must pos-
sess a system architecture in which both complexity increas-
ing ratchets and factors mitigating the costs of complexity
increases can be formulated. The essential characteristics of
the system architecture are modularity and concurrency.

Modularity exists at many levels in the biochemical ap-
paratus of the cell. Protein structural domains, individual
proteins, protein complexes and protein interaction networks
have all been described as “modules” (Pereira-Leal et al.,
2006). Significantly, there are examples of increased bio-
logical complexity originating from the duplication and spe-
cialization of modules at each of these levels.

If modularity provides the modules that are duplicated and
specialized to increase complexity, then concurrency allows
the modules to be composed in ways that mitigate the costs
of those increases. Executable modules are processes and
concurrency is the property of a system that allows processes
to be executed in different orders without affecting the re-
sult. More precisely, concurrency allows processes to be ex-
ecuted in partial orders defined solely by data dependencies.
This flexibility increases robustness.2 While the connection
between modularity and evolvability has often been empha-
sized, the importance of concurrency to an evolvable system
architecture has not been previously noted. This is probably
because concurrent execution is the default for biochemi-
cal systems. However, this is not true of computational sys-
tems. Indeed, to our knowledge, there is no artificial organ-
ism apart from our own (see Figure 2) that replicates using
operations that can be performed in different orders.

A system is redundant if it contains multiple instances of
the same component and if working instances can substitute
for broken instances in the event of failure. Duplication cre-
ates multiple process instances and concurrency allows one
instance to execute instead of another, yielding redundancy.

A system is degenerate if it can solve the same problem
in different ways (Edelman and Gally, 2001). Concurrency
supports degeneracy because it allows a process derived by
duplication and specialization of an antecedent process to
execute instead of the antecedent. Redundancy and degen-
eracy increase robustness because they allow organisms to
survive component failure and respond in a variety of ways
to complex environments.

Parallelism is the simultaneous execution of processes on
multiple processors. Absent a global clock, parallelism is
impossible without concurrency; absent parallelism, com-
plex organisms are at a disadvantage relative to simpler or-
ganisms in the competition for resources, since they require
more time to reproduce.

2‘Robustness’ in the engineering sense, not in the sense it is
used in evolutionary biology, where it is generally understood to
mean stability of the genotype-to-phenotype mapping.



10 genes (zippers)

20 primitives 10 composites (>=>)

composome (group)

3 methods (>=>)

891 primitives 353 primitives

cytoplasm (roving pile)

6 methods (>=>)

529 primitives

41 primitives

10 prefixes (>=>)

20 primitives

1 primitive

bud

genome cytosol

Figure 2: The artificial protocell is a moving, self-
replicating, spatially distributed assembly of 1855 primitive
combinators called a roving pile. Its genome consists of 10
genes represented by zippers that are distributed through out
the pile like the plasmids of bacterial cells. Methods in the
cytoplasm are executed in parallel and in parallel with those
in the composome, which execute concurrently.

Autocatalytic Set

Combinators which return monadic values are the building
blocks of programs in functional programming. They dif-
fer from other notional program building blocks, e.g., byte-
codes, in that monadic combinators do not require additional
address operands to implement computations which would
require statement-level control in imperative programming,
e.g., iteration. Like polypeptides in biochemistry, programs
exhibiting complex behavior can be constructed from com-
binators simply by sequencing them.

Object-oriented combinator chemistry (OOCC) is an
artificial chemistry with composition devices borrowed
from object-oriented and functional programming languages
(Williams, 2016). Actors are embedded in space and subject
to diffusion; since they are neither created nor destroyed,
their mass is conserved. Actors can associate with one an-
other by means of groups and bonds. This allows working
sets to be constructed and the actors in these working sets to
be addressed in different ways. Actors use programs called
methods, constructed from combinators, to asynchronously
update their own states and the states of other actors in their
neighborhoods. The fact that programs and combinators are
themselves reified as actors makes it possible to build pro-
grams that build programs from combinators of a few prim-
itive types using asynchronous spatial processes that resem-
ble chemistry as much as computation.

A composite combinator can be represented as a binary
tree with primitive combinators as leaves and interior ver-
tices signifying Kleisli composition (>=>). In OOCC, the
compose primitive combinator joins two trees with (>=>)
while the decompose primitive combinator splits a non-leaf
tree into its two subtrees. Composite combinators can be
promoted to executable methods using the unquote primi-
tive combinator.

A zipper is an implementation of a data structure that al-

lows it to be traversed and updated without mutation (Huet,
1997). All zippers consist of three parts. The front repre-
sents the portion of the data structure that has already been
traversed, the back represents the portion yet to be traversed,
and the focus is a data item between the front and the back
that can be examined or replaced.

A composite combinator’s simplest assembly sequence
builds it by adding one primitive combinator at a time via
Kleisli composition, i.e., it is a right fold with (>=>). This
produces a lopsided tree that can be implemented as a list
zipper. Both the back and the front of the zipper are com-
posite combinators with the primitives comprising the front
composed in reverse order. The zipper’s focus is a single
primitive combinator.

In a reified implementation in OOCC, a next bond joins
the back and front while a hand bond joins the back to the
focus. The zipper is traversed by pushing the focus onto the
front (using compose), and popping a primitive combinator
from the back (using decompose). This primitive combina-
tor becomes the new focus.

A reversed copy of a composite combinator can be con-
structed by traversing its zipper representation. This is ac-
complished by replacing the front with a pair of fronts.
These are connected to the back with prev and next bonds.
At each step of the traversal, the focus is pushed onto the
first front and a primitive combinator from the neighbor-
hood with type matching the focus is pushed onto the second
front. This process is repeated until the back consists of a
single primitive combinator, at which point the pair of fronts
represents a reversed original and a reversed copy. These
can (in turn) be reversed (producing a non-reversed original
and non-reversed copy) by a second traversal of the zipper
in the opposite direction. This requires creation of a pair
of backs. The second back (initially a primitive combinator
from the neighborhood with matching type) is joined to the
first back by making it a member of the first back’s group.3

Note that all of this is accomplished using a very small
number of operations that push (and pop) primitive combi-
nators and make (and break) bonds. Significantly, by us-
ing zippers, we eliminate the need for pointers to characters
within arbitrarily long string representations of programs,
e.g., as in Hickinbotham et al. (2011).

The copying process is implemented by six methods; see
Figure 3 (left). Initially, the front and focus of a zipper repre-
senting a composite combinator to be copied are both prim-
itive combinators (the first two forming the composite). The
following operations are performed sequentially:

• AcsA creates the second front by finding a primitive com-
binator matching the front in the neighborhood and creat-
ing the next bond.

3A group is used instead of a hand bond so that the form of the
input to method acsE is distinguishable from the form of the input
to method acsC.
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Figure 3: Six stage process used to synthesize methods and
copy zippers showing changes to zipper conformation and
function of each method in the parallel pipeline (left). The
addition of six zippers representing the methods implement-
ing the process itself yields an autocatalytic set (right).

• AcsB traverses the zipper in the forward direction, extend-
ing the pair of fronts representing the reversed original
and reversed copy. At each step, the copy is extended us-
ing a primitive combinator of matching type found in the
neighborhood.

• AcsC adds the final pair of primitive combinators to the
pair of fronts leaving the zipper without a focus and with
a back consisting of a single primitive combinator.

• AcsD creates the second back by finding a primitive com-
binator in the neighborhood matching the first back and
joining it to the first back’s group.

• AcsE traverses the zipper in the backward direction, re-
versing the pair of fronts by popping primitive combina-
tors off both of them and pushing these primitive combi-
nators onto the pair of backs.

• AcsF finishes the reversing process and uses the first back
to construct a zipper in the initial state. AcsF then (in
effect) flips a coin. If the result is heads, acsF unquotes
the second back, promoting it to a method. If the result is
tails, acsF uses the second back to a construct a copy of
the original zipper in the initial state.

If the six copying methods acsA–acsF are placed in the
world with a zipper representing a seventh method, then half
of the time, the zipper representing the seventh method will
be copied. The other half of the time, an instance of the
seventh method will be synthesized. Once the world con-
tains multiple copies of the zipper representing the seventh
method, the six copying methods will begin to execute in
parallel, forming a production pipeline for inert (zipper) and
active (method) instances of the seventh method.

At this point, an interesting possibility suggests itself. If
the six copying methods acsA–acsF are placed in the world
with six zippers representing the copying methods them-
selves, then the twelve entities will form an autocatalytic

set (Farmer et al., 1986). Over time, the six methods will
use the six zippers to construct additional copies of both
methods and zippers. The methods and zippers are the spa-
tially distributed components of a modular, concurrent, par-
allel, self-replicating system; see Figure 3 (right). However,
despite these noteworthy attributes, the autocatalytic set is
not a bona fide artificial organism because it does not segre-
gate its components from the components of other systems,
and absent this compartmentalization, Darwinian evolution
is impossible.

Membranes
After elemental building blocks, reaction catalysts, and
molecules for storing energy and information, compartments
are probably the next most important ingredient in the recipe
for life. Given their amazing utility, it is remarkable that, in
our universe, we basically get them for free. This is due to
the existence of lipid compounds that, when placed in water,
spontaneously assemble into liposomes, vessels defined by
bilayer membranes. Yet membranes are not uncomplicated.
Consider the problem of how to make one grow. To insert a
molecule into a lipid bilayer, a set of forces must be applied
on the lipid molecules adjacent to the point of insertion to
create a gap and these forces must propagate through the
bilayer. They must be combined with the attractive forces
the lipids exert on each other and the forces exerted on the
membrane by the cytoplasm. This mass spring system re-
quires a physics far more complex than the rudimentary one
underpinning OOCC, which has no analog of force.

However, there is a still harder problem associated with
growth. In order for a cell to grow, two different actions must
be coordinated. First, the volume must increase. This can be
done by adding something to the cytoplasm. Yet if pressure
is to remain constant, the membrane must also increase in
area. Complicating matters, the cytoplasm’s volume and the
membrane’s area must increase at different rates. Assuming
a spherical cell, an increase in the volume by ∆V requires a
corresponding increase in surface area by

∆A = π(r3 +∆V )
2
3 −πr2

which depends on the cell’s radius, r. Given the dependence
on r, it follows that there is no single local operation that
can maintain constant pressure by pairing imports to both
cytoplasm and membrane.

Fortunately, membranes are not the only way to achieve
the compartmentalization necessary for the creation of life.
In fact, in the physical universe, a thing as simple as a water
droplet in oil can function as a compartment. 4 In a com-
putational universe, a compartment is simply a data struc-
ture for representing a compact, spatially embedded set. Us-
ing a Jordan curve to represent membership in such a set

4Sokolova et al. (2013) have demonstrated transcription and
translation in E. coli lysate contained in water-in-oil droplets.



by partitioning space into two disjoint regions, one (inside)
containing the set’s elements, the other (outside) containing
everything else, is merely one possibility.

Roving Piles
North, east, south and west are new relations in OOCC on
multisets of actors, or groups. We will call the edges of
group relations, links, to distinguish them from the edges
of actor relations, which we call bonds. As with actors and
bonds, groups can possess at most one link of each type.
East and west are inverse relations, i.e. E(x,y) = W (y,x);
the same is true of north and south. Because they corre-
spond to the four cardinal compass directions, links of these
four types are called cardinal links. Cardinal links are used
to connect base groups. Up and down are a second inverse
relation on groups that can be used to represent a stack of
additional groups above any base group. A base group is a
group without a down link; a base group without an up link
is said to be uncovered. A roving pile is a connected com-
ponent of base groups embedded in the 2D lattice together
with the groups contained in stacks above them. The set of
base groups form the pile’s footprint and base groups with
one or more empty cardinal links form its boundary.

In OOCC, methods in the same stack execute concur-
rently but not in parallel; they compete for a shared pro-
cessor resource in zero sum fashion. However, methods in
different stacks in the same pile execute in parallel. So that
piles can move and grow, and so that actors within piles can
freely mix, groups in piles are subject to the following three
operations:

1. Diffusion. A non-base group can be moved to an adjacent
stack.

2. Retreat. An uncovered base group on the boundary can be
moved to an adjacent stack if its removal from the foot-
print will not split the footprint into separate connected
components.

3. Advance. A covered base group on the boundary can be
replaced in the footprint by the group above it and used to
extend the footprint in the direction of an empty cardinal
link.

Ideally, these operations would be implemented as de-
scribed above and performed at random. Unfortunately, the
retreat and advance operations, as described, cannot be im-
plemented using only local rules.

Determining whether or not the removal of a group from
the footprint will split the footprint into separate connected
components is inconsistent with an implementation on an
ACA substrate since it is a function of non-local proper-
ties of the cardinal link relation. For example, the footprint
might consist of base groups forming a square with sides
one group wide and n groups long; see Figure 4 (left). Al-
though it is clear that any single group can be removed with-
out splitting the footprint, this can only be determined by
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Figure 4: Even though it would not split the pile’s foot-
print, an uncovered base group at P cannot join the stack to
its east because this cannot be determined by local analysis
alone (left). In contrast, an uncovered base group at Q can
do so because it would not split the subset of the footprint
within its Moore neighborhood (red). Although a covered
base group at A can advance the footprint east (and C is in
the footprint) no link to C will be created (middle). In con-
trast, because there is a path between X and Z in the subset
of the footprint contained in the Moore neighborhood of Y
(blue), a covered base group at X can advance the footprint
east and create a link to the base group at Z. Because the
evolution of roving pile shape is governed solely by local
rules, pile footprints can overlap (right). However, actors in
overlapping neighborhoods cannot interact.

traversing a path of length 4n−1 links. For this reason, the
implementation of the retreat operation in OOCC is based
on a stronger (sufficient but not necessary) property. More
specifically, an uncovered base group can be removed if and
only if it will not split the subset of the footprint contained
in its Moore neighborhood into separate components. This
stronger property can be enforced using only local rules.

Implementation of the advance operation presents a simi-
lar problem. To understand this, consider a roving pile with
a square footprint like the one described above, but with
a single group removed; see Figure 4 (middle). In princi-
ple, an advance operation could fill the gap, completing the
square. However, this would require a process able to de-
termine whether or not base groups adjacent to the advance
site are part of the same pile as itself. Again, this can only
be done by traversing a path of length 4n− 1 links. The
solution is to perform an exhaustive enumeration within the
neighborhood surrounding the advance site; see Figure 5.
This is done to avoid (as much as possible using local rules
only), the situation where spatially adjacent regions of the
footprint are not connected.

Observations of a working implementation show that rov-
ing piles remain flat (low average stack height) and con-
nected. Smaller piles (those containing less than fifty actors)
constantly evolve in shape while rapidly moving around the
lattice on random walks. Holes created by expelling ac-
tors in uncovered base groups are quickly filled. Larger
piles extend and retract pseudopod-like extensions but re-
main largely immobile in aggregate.

Four primitive combinators were added to OOCC to serve
as an interface to the roving pile data structure:

• Safe fails if the actor it is applied to cannot be removed
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Figure 5: A covered base group at X with an empty north
link can be replaced in the footprint by the group above it
in the stack. Now unlinked, this advance group can be used
to extend the footprint northward to N. This requires map-
ping the footprint in the neighborhood of N using search.
Any base groups discovered at NW (left), NN (middle) and
NE (right) become the advance group’s west, north and east
links. The group that replaced it in the footprint at X be-
comes the advance group’s south link. Corresponding ad-
vance operations are performed in the other three cardinal
directions. The four together depend only on the topology
of the footprint inside a 5×5 neighborhood centered on X.

from the pile without splitting the pile’s footprint. It is
used as a guard for actions that change actors’ positions
in the pile or expel actors from the pile.

• Expel removes an actor from the pile. The actor becomes
invisible to actors inside the pile and visible to actors out-
side the pile. This action fails if the actor cannot be ex-
pelled without splitting the pile’s footprint.

• Request creates a proxy group representing a request for
the pile to import an actor of the same type as the actor it
is applied to. It fails if it is applied to an actor which is
not a primitive combinator.

• Seed creates a new pile containing a single group.

Artificial Protocell
Recent work has described liquid droplets containing en-
zymes catalyzing growth that spontaneously fission into two
equal sized droplets upon reaching a critical size (Zwicker
et al., 2017). The authors (and others) suggest that droplets
like these could form the basis of an artificial protocell in
vitro. The possibility of designing a roving pile with anal-
ogous behavior that could form the basis of an artificial
protocell in silico leads us to ask whether an autocatalytic
set comprised of method and zipper instances of acsA–acsF
could be hosted in a roving pile. A viable protocell hosted
in a roving pile would contain both the autocatalytic set and
the primitive combinators needed to synthesize it. These
primitives would be consumed during the process of copying
methods and zippers, but be replenished by pairing compose
actions that consume primitives with request actions that
replace them while also yielding geometric growth. This
growth would culminate in binary fission. Assuming that
the components of the mother protocell are divided among

its two daughters at random, then the probability that both
daughters will be viable becomes closer and closer to one as
the mother’s size increases.

The approach sketched above seems like a simple and
elegant pathway to an artificial organism possessing mod-
ularity, concurrency and parallelism. Unfortunately, there
are several practical difficulties. First, the phenomenon of
droplet fission is based on the fact that instability increases
as droplet size increases. Because an analogous mechanism
devised for roving piles would require the computation of
the non-local property of pile size, there can be no simple
mechanism for pile fission. However, even if a mechanism
could be devised, the pile size of the mother protocell re-
quired to reasonably guarantee the viability of both daugh-
ters would still be quite large (in the tens of thousands). For
both of these reasons, a different solution was sought.

Absent splitting a mother into two equal-sized daugh-
ters, a daughter must be constructed, method-by-method and
zipper-by-zipper, in a process more like budding than fis-
sion. An efficient construction process would export, to the
daughter, one method and zipper instance of each gene, and
the primitive combinators necessary to synthesize both. To
keep track of what has already been exported, and to recog-
nize when the daughter has received the full complement of
components, the mother protocell needs to maintain a check-
list of some kind. We call the group of actors comprising and
managing this checklist, the composome, since it serves as
the protocell’s repository of compositional information.

The simplest composome would consist of the methods
implementing the export and budding processes, and a set of
composites (one per gene) to represent the checklist. The
copying process in the cytoplasm would translate zippers
into composites, and each of these would be exported to
the daughter as a composite, method or zipper; compos-
ites exported as composites would be used to construct the
daughter’s composome. Composites in the mother’s com-
posome would be marked with self-bonds during the export
process to indicate which composites, methods and zippers
have been exported and which have not. After the full com-
plement has been exported, the bond between mother and
daughter (now viable) would be severed.

Although the approach sketched above works, it has
shortcomings. First, it is clearly inefficient to use com-
posites to represent methods and zippers since each has the
same length as the method and zipper it represents. Second,
requiring two identical copies of each gene (a zipper in the
cytoplasm and a composite in the composome) would un-
dermine evolvability, since a point mutation in either copy
would render the protocell non-viable. Recognition of these
shortcomings lead to a better approach, described below.

If the composites constructed in the cytoplasm possessed
short, unique, non-executable prefixes, and these prefixes
could be used to form the checklist in the composome, then
the protocell would be far more efficient. Since there is only



one copy of each gene (a zipper in the cytoplasm), evolv-
ability is not undermined; see Figure 6. This design, for an
artificial organism with an architecture featuring modular-
ity, concurrency and parallelism, has been implemented and
tested in OOCC. It efficiently and reliably replicates across
multiple generations and possesses only 10 genes:

• CopA–copE perform operations that are identical to
acsA–acsE except for three small differences. First,
copA–copE are all prefaced by a quit combinator that
is executed when the method is exported to the daughter
composome. This causes the method to quit the compo-
some and join the daughter cytoplasm. Second, copA–
copE are modified so that the fronts, focii, and backs of
all zippers are contained inside single groups. This avoids
the tangling that results when the separate parts of a spa-
tially extended zipper joined by bonds occupy different
branches of a pile. Third, all actions that consume primi-
tives in the pile are balanced by requests to replace them.

• CopF does the final compose operation needed to com-
plete a composite representation of a gene for export, then
restores the zipper to the conformation expected by the
copA method.

• CytX contains a short executable sequence, me >=>
quit >=> smash >=> none, followed by a much longer
non-executable sequence containing one of each of the
primitives necessary for replication (in no particular or-
der). The short executable sequence causes cytX to quit
the daughter composome and smash itself so that the
primitive combinators comprising cytX itself form the cy-
tosol of the daughter.

• ExpX exports composite representations of genes as
methods and zippers and marks prefixes in the mother
composome with self-bonds to keep track of progress.
The first two combinators of the composite are removed
and composed to form its prefix. If the prefix with match-
ing type in the mother composome has no directed self-
bond, then the composite is unquoted and added to the
daughter composome together with its prefix.5 If the pre-
fix with matching type has a directed self-bond but no
undirected self-bond, then the composite and its prefix are
used to construct the zipper representation of the gene and
this is added directly to the daughter cytoplasm. Finally, if
the prefix with matching type has both directed and undi-
rected self-bonds, the composite and its prefix are super-

5Because unquoted suffixes are methods, they will execute in
the daughter composome when placed there. Cytoplasm-based
methods, e.g., copB, are prefaced by a pair of combinators,
me >=> quit, that causes them to quit the daughter composome;
composome-based methods, e.g., expX, lack this device. Like the
cytX method used to create the cytosol, this is a simple use of pro-
grammed self-assembly by the daughter.

fluous, so they are expelled.6

• BudA checks to see if any actor in the composome has
a bond. If none do, then it expels a primitive from the
mother pile and applies the seed combinator to it, creat-
ing the daughter pile. It adds a second primitive to the
composome and creates a directed bond between it and
the first primitive. Finally, requests are made to the pile to
replace both primitives.

• BudZ checks to see if all prefixes in the composome have
directed self-bonds. If they do, it deletes all prefix self-
bonds (directed and non-directed) and also deletes the
bond connecting the mother and daughter, which are now
both viable protocells.

The artificial protocell is sequential at the top level since
it exports methods and zippers one at a time, as they become
available, but employs pipeline parallelism in their produc-
tion. There are only two steps in the pipeline that require
more than O(1) time. These are implemented by the copB
and copE methods, which require time proportional to the
number of primitive combinators comprising the method be-
ing copied, O(M). However, the rate limiting step of the
replication process is copB, which must wait for the arrival
in the neighborhood of primitive combinators imported by
the pile. It follows that the parallel time complexity of the
replication process is

O
(MN

B

)
= O

(M
B

)
∑

N−1
k=0 O

( N
N−k

)
where M is the average number of primitive combinators
per gene, N is the number of genes, and B is the number
of instances of copB.7 Significantly, the time required for
self-replication decreases as additional genes encoding the
copB method are added (with diminishing return when B >
N). It follows that the protocell is a rare example of a self-
replicating system where increased complexity, because it
yields increased parallelism, pays for itself.

Conclusion
Because it discounts randomness, computational depth is
a useful measure of an artificial organism’s complexity.
Absent parallelism, organisms of increased computational
depth require more time to replicate. This means that they
are at a disadvantage relative to simpler organisms in zero
sum competitions for space. It follows that artificial organ-
isms can only evolve into more complex forms if they divide

6Although OOCC doesn’t have an if-then-else, equivalent func-
tionality can be achieved in a single method when all actions are
reverseable. For example, if z′ is the action that reverses z, then the
sequence, z >=> x >=> z′ >=> y will execute the action z when x
fails and y when x succeeds.

7A breakfast cereal company includes a plastic dinosaur (one
of N different types) in each box of cereal. It is straightforward to
show that a grandmother must buy O(N) = ∑

N−1
k=0 O

( N
N−k

)
boxes

on average before her grandson has one of each type.
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Figure 6: Schematic diagram of artificial protocell showing
copying of zippers in cytoplasm and export of zippers and
methods by composome through directed bond to daughter
protocell. Six methods implement the copying process in the
cytoplasm, three methods implement the budding and export
process in the composome, and one method smashes itself to
form the cytosol. The methods in the cytoplasm execute in
parallel and in parallel with those in the composome (which
execute concurrently). The composome contains ten prefixes
(length two composites with unique types) that are marked
with self-bonds to signify the zippers and methods that have
already been exported.

the problem of self-replication among parallel subprocesses.
In the absence of a global clock, parallelism is impossible
without concurrency, which allows subprocesses to be exe-
cuted in different orders.

Artificial organisms can increase in complexity by means
of duplication and specialization of modules representing
subprocesses. In addition to enabling parallelism, concur-
rency can mitigate the cost of increased complexity by pro-
viding a variety of execution paths, some of which include
these duplicated and specialized modules. This can yield
increased robustness through redundancy and degeneracy.
We believe that modularity and concurrency were already
present in the cellular architecture of the last universal com-
mon ancestor of all life on Earth and that these characteris-
tics can be credited in part for its subsequent evolution into
forms of increased complexity.

Apart from a modular and concurrent architecture, an arti-
ficial organism needs a device for separating its genome and
replication machinery from those of other organisms. We in-
troduced a new data structure, called a roving pile, capable
of representing a set of actors inhabiting an arbitrarily large
four-connected component of sites in a 2D lattice. Roving
piles move and grow and actors within roving piles freely
mix, which is essential for message passing and for the as-
sembly of methods from combinators.

Lastly, we used an object-oriented combinator chemistry

to construct an artificial organism with an architecture fea-
turing modularity, concurrency and parallelism. This organ-
ism replicates by means of an asynchronous message pass-
ing computation implemented inside of a roving pile con-
taining 1855 primitive combinators. Its genome consists of
10 genes represented by zippers that are distributed through
out the pile like the plasmids of a bacterial cell.
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