Increased Complexity and Fitness of Artificial Cells that Reproduce Using
Spatially Distributed Asynchronous Parallel Processes

Lance R. Williams!

'Department of Computer Science, University of New Mexico, Albuquerque, NM 87131
williams @cs.unm.edu

Abstract

Replication time is among the most important components of
a bacterial cell’s reproductive fitness. Paradoxically, larger
cells replicate in less time than smaller cells despite the fact
that assembling a larger cell requires collecting and combin-
ing increased quantities of raw materials. This feat is ac-
complished through the prodigious use of parallel process-
ing, chiefly, the translation of mRNA into protein by tens
of thousands of ribosomes acting in parallel. The massive
over expression of ribosomes permits protein synthesis, the
limiting step in replication, to occur at a rate and scale that
would be otherwise impossible. In computer science, spa-
tial parallelism is the distribution of work across the nodes
of a distributed-memory multicomputer system. Despite the
fact that a non-negligible fraction of artificial life research
is grounded in formulations based on spatially parallel sub-
strates, there have been no examples of artificial organisms
that use spatial parallelism to replicate in less time than
smaller organisms. This paper describes artificial cells de-
fined using a combinator-based artificial chemistry that repli-
cate in less time than smaller cells. This is achieved by em-
ploying extra copies of programs implementing the limiting
steps in the process used by the cells to synthesize their com-
ponent parts. Significant speedup is demonstrated, despite the
increased complexity of control and export processes neces-
sitated by the use of a parallel replication strategy.

Introduction

On Earth, the origin of life and its evolution into organisms
of increasing complexity was facilitated by our universe’s
rich physics, the early Earth’s bountiful solar, geothermal
and chemical energy resources, the massive volume of its
prehistoric marine environment, and the vast scale of geo-
logic time. The field of artificial life is premised on the idea
that artificial systems can be constructed which, through
simplifications and other economies of design, are capable
of analogous displays of emergence and open-ended evolu-
tion, but on vastly shorter time scales within the memories
of digital computers.

Any attempt to demonstrate the evolution of organisms of
increasing complexity in an artificial system should begin
with an attempt to define complexity itself. Lloyd (2001)
gives a list of complexity measures which he divides into
three categories: 1) difficulty of description; 2) difficulty

of creation; and 3) degree of organization. Unfortunately,
for our purposes, measures based on difficulty of descrip-
tion like Kolmogorov (1965) suffer from the drawback that
random objects have longer descriptions than non-random
objects. This is a problem because the constraints on struc-
ture imposed by function ensure that, although complex in a
sense we are attempting to define, living things are also far
from random.

In Loyd’s taxonomy, degree of organization functions as
a catch all for measures that attempt to quantify the extent
of an object’s self-similarity. Bennett (1988) also reviewed
measures of complexity, including measures based on self-
similarity such as multivariate mutual information, and dis-
cussed their suitability for quantifying the complexity of liv-
ing things. Ultimately, citing the existence of trivial non-
living examples, Bennett discounts measures based on self-
similarity and proposes a measure based on difficulty of cre-
ation. Informally, the logical depth of an object is the mini-
mum time required for a sequential process to construct the
object from its shortest description. Unfortunately, logical
depth can be difficult to estimate in practice, since knowing
that a process constructs an object from some description in
a given number of steps only establishes an upperbound on
its logical depth. Perhaps more importantly, the size of the
object gives a lowerbound, since no sequential process can
construct an object composed of n primitives in less than n
steps. However, any object of size n can be constructed in
n steps from a description of length n by a trivial copying
process, and objects that can only be constructed this way
are effectively random.

Proposed measures of complexity based on difficulty of
creation and description are not specific to self-replicating
entities but apply to objects of all kinds. Moreover, although
Bennett’s formulation of logical depth is compelling, there is
no implied threshold that, if exceeded, would indicate an ob-
ject’s possession of non-trivial complexity. These considera-
tions suggest two qualities specific to self-replicating entities
and characteristic of all biological life, yet few (if any) arti-
ficial organisms. The first is that living things reproduce by
copying and translating compressed self-descriptions. The
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Figure 1: E. coli replication time in minutes (left scale) and
dry mass in 10~13 grams (right scale) as functions of num-
ber of ribosomes (x10%). All numbers are from Milo and
Phillips (2015).

second is that living things reproduce in less time than a
sequential process could construct them from an uncom-
pressed description. Although both qualities characterize bi-
ological life, and therefore merit investigation, it is the sec-
ond which is the topic of the present paper.

Replication time is among the most important compo-
nents of a bacterial cell’s reproductive fitness. The faster
a bacterium replicates, the more likely it is to outcompete
others for space and nutrients. It is for this reason that defin-
ing complexity as logical depth seems incompatible with
the goal of increasing complexity through natural selection,
since it it seems to imply that more complex cells must (by
definition) reproduce more slowly. But bacterial cells are
constructed using parallel not sequential processes. Using
parallel construction processes, it is possible for a bacterial
cell to both be larger and require less time to reproduce. In-
deed, this is precisely what is observed in nature; the growth
rate of populations of bacterial cells increases with cell size
(Bremer and Dennis, 1996). This would not be possible if
bacterial cells did not use parallelism at a massive scale.

Ribosomes are macromolecular complexes made of
rRNA which translate mRNA into protein, the most funda-
mental construction process employed by the living cell. A
bacterium’s replication time decreases as the fraction of its
dry mass consisting of rRNA increases. In the limit, a single
E. coli can contain 7.2 x 10* ribosomes and rRNA can ac-
count for fully 37% of its dry mass, achieving a replication
time as short as 24 minutes (Milo and Phillips, 2015). See
Figure 1.

All living cells have non-trivial algorithmic complexity
since they are all many orders of magnitude more mas-
sive than their genomes, which function as compressed self-

descriptions. Decompression is accomplished by means of
gene expression networks, which permit genes to be ex-
pressed at variable rates and in numbers far exceeding their
representation in absolute numbers in the genome. Although
ribosomes are made of rRNA not protein, they are simi-
larly over expressed relative to their representation in the
genome. The E. coli genome does not have 7.2 x 10* copies
of the gene encoding its rRNA; it only has seven (Milo and
Phillips, 2015).

Parallelism is not limited to translation of mRNA into pro-
tein by ribosomes. It is also used to accelerate duplication
of the bacterial genome itself. This process is implemented
by a pair of replication forks that copy the circular DNA
molecule forming the chromosome of the mother cell, re-
sulting in a 2x speedup. However, Youngren et al. (2014)
showed that additional replication forks can begin construc-
tion of the granddaughter cell’s chromosomes within daugh-
ter cells prior to binary fission and before duplication of the
mother cell’s chromosome has completed, resulting in addi-
tional parallel speedup.

Eukaryotic cells exploit parallelism to an even greater ex-
tent, by incorporation of complex self-replicating compo-
nents like mitochondria that reproduce in parallel, and by
distribution of their genomes across multiple chromosomes,
which are copied and exported in parallel. However, it is in-
disputable that, with the advent of multicellular organisms,
self-replication by means of parallel processes achieved a
breakthrough to a qualitatively different level. The existence
of organisms as large as elephants and whales would not be
remotely possible were it not for the fact that cell division,
growth and differentiation are inherently parallel processes. '

In summary, we believe that the study of self-replication
by parallel processes is critical to achieving the primary goal
of the field of artificial life, the demonstration of open-ended
evolution of artificial organisms of increasing complexity.
Despite this, and despite a long history of research on ar-
tificial self-replicating systems (Sipper, 1998; Freitas and
Merkle, 2004), there has been relatively little study of sys-
tems that replicate using parallel processes. The prior work
relevant to parallel self-replication can be divided into five
categories:

1. Artificial organisms that replicate using sequential pro-
cesses implemented on top of synchronous (von Neu-
mann, 1966; Langton, 1984) or asynchronous parallel
substrates (Nehaniv, 2004).

2. Artificial organisms implemented on top of asynchronous

parallel substrates that replicate using sequential pro-
cesses but also make limited use of parallelism (Laing,
1977; Hutton, 2004).

One might consider eusociality as practiced by social insects
(ants) and some mammals (mole rats) to be a continuation of this
pattern.



3. Simulations of spatially distributed evolving popula-
tions of self-replicating sequential programs (Ray, 1994;
Adami et al., 1994).

4. Autocatalytic sets defined in artificial chemistries that are
not complete organisms because they do not isolate their
reactants and products and/or lack the complexity of com-
plete organisms (Farmer et al., 1986; Nakamura, 2010).

5. Self-replicating parallel programs in shared-memory mul-
tiprocessors (Thearling and Ray, 1996).

Nakamura (2010) showed how programs for a universal
computer can be encoded as a parallel production system
hosted on an asynchronous parallel substrate. He proved im-
portant properties of his encoding scheme including freedom
from race conditions. It follows that programs which halt
yield unique solutions. Finally, he described a parallel asyn-
chronous self-replicating system based on a self-replicating
program encoded using his scheme that replicates in time
logarithmic in program size. Unfortunately, because no ex-
perimental results were described, this speedup can only be
considered a theoretical upperbound and an implementation
on real parallel hardware would be subject to overhead like
non-zero mixing times of reactants and other factors not ad-
dressed in the paper.

Thearling and Ray (1996) described evolution of parallel
self-replicating programs in a version of Tierra which in-
cluded a split instruction that caused a process to fork into a
pair of processes on a shared-memory multiprocessor. Un-
like spatial parallelism on a distributed-memory multicom-
puter, these processes execute in parallel without duplica-
tion and distribution of the programs defining the processes.
The instruction also modified an index register in a way spe-
cific to each daughter process so that the address range was
divided between them. The ancestral program was not a
quine, which replicate using dual translation and copying
processes, but instead copied itself directly by exploiting its
residency in the random access shared-memory. Nor was
it sequential; it contained a single split instruction that re-
duced execution time by 2x relative to a non-parallel copy-
ing program. Although the evolution of programs with re-
duced execution times was demonstrated, it should be noted
that adding n splits would decrease the execution time by
2"x of any program copying a block of memory of size 2"
on this architecture, and the programs which evolved simply
added splits while padding with non-operational instructions
so that program length remained evenly divisible by 2”".

Concurrency and Parallelism

As conceived by von Neumann (1966), a self-replicating
system consists of five components

A+B+C+D+¢(A+B+C+D)

where A is a translator, B is a copier, C is a controller, D is
payload and ¢ (A+ B+ C~+D) is adescription of A, B, C and

D. Although von Neumann’s self-replicating system was
formalized as a synchronous cellular automaton, the above
schema applies equally well to an asynchronous system of
five actors which can be viewed as an autocatalytic set in an
artificial chemistry governed by two rules:

a:A+¢(A+B+C+D) — 2A+¢(A+B+C+D)+B+C+D
b:B+¢(A+B+C+D) — B+2¢(A+B+C+D).

These rules have reactants on the left side of the arrow and
products on the right. The first rule translates the description
into a set of programs while the second rule copies the de-
scription. Each rule describes a subproblem which must be
solved to achieve self-replication. The reactants and prod-
ucts of subproblems ¢ and d are omitted for the time being,
but might (for example) recognize when the a and b sub-
problems have completed, export products into the daughter
cell, and effect fission of an enclosing membrane. For the
moment, we assume that the times required to solve ¢ and d
are small and, unlike a and b, independent of the length of
the description, ¢ (A + B+ C + D). Nevertheless, ¢(C) and
¢ (D) are likely as long as ¢(A) and ¢(B) and (like them)
must be both translated and copied.

In computer science, a concurrent system consists of
subprocesses that can be executed in different orders, con-
strained only by data dependencies. A data dependency ex-
ists when one subprocess provides the input to a second, in
which case the first process must complete before the sec-
ond can begin. Concurrency is a necessary precondition for
parallelism, which is the simultaneous execution of subpro-
cesses on different processors. Parallelism imposes addi-
tional constraints on execution order since a resource being
used by one subprocess cannot be simultaneously used by
another. The shared resource in the self-replication problem
is the description, ¢(A+ B+ C+ D). It follows that sub-
problems a and b cannot be solved in parallel, which we
abbreviate as a/b. Since there are no data dependencies, the
execution order of the a and b subproblems is otherwise un-
constrained, so that @ — b and b — a are both possible.

The asynchronous system can be reformulated so that par-
allel solution of subproblems is possible by splitting the de-
scription into four pieces:

A+B+C+D+¢(A)+¢(B)+¢(C)+ (D).
The system is still governed by two rules
ax:A+¢(x) — A+¢(x)+x
bx:B+¢(x) — B+2¢(x)

where fx is program f and description x. However, there are
now eight subproblems, which we refer to as aa, ab, ac, ad,
ba, bb, bc and bd. Because there are no data dependencies
between the subproblems, they can be solved sequentially in
any of 8! possible orders, including

aa — ab — ac — ad — ba — bb — bc — bd.



To understand the potential for parallel solution of subprob-
lems, the constraints on simultaneous execution imposed
by shared resources must first be identified. Execution of
a process solving subproblem fx precludes the simultane-
ous execution of processes solving subproblems fy and gx
since there are single instances of program f and description
x. This imposes ten constraints on simultaneous execution
which we abbreviate as fx/fy and fx/gx. Nevertheless,
even with these constraints, many strategies for parallel so-
lution of subproblems remain, including

(aa|ba) — (ab|bb) — (ac|bc) — (ad | bd)

which yields a 2 x speedup relative to the sequential strategy.
Distributing the description across multiple actors increased
parallelism by reducing contention for a shared resource.
However, it also created new opportunities for parallelism
that can be exploited by the addition of extra copies of A, B,
¢(A) and ¢ (B). Let n be the total number of copies of A, B,
¢(A) and ¢ (B) in an asynchronous self-replicating system:

n(A+¢(A)+B+¢(B))+C+¢(C)+D+¢(D).
The system is governed by two rules:

ainIAi+¢(xj) — Ai+¢(x.i)+xj
bin:Bi—&—(])(xj) — Bi+2¢(xj)-

It requires the solution of 4(n+ 1) subproblems a;x; and b; x;
to achieve self-replication. The same constraints on simul-
taneous execution of the increased number of subproblems
apply: fx/fy and fx/gx. When n = 2, these constraints al-
low the following strategy (and many others of equivalent or
lesser efficiency) for parallel solution:

(aoao|a1a1 ‘bobo|b1b1) —

(Clobo ‘ a1b1 |b0a0 | blal) — (aoc ‘ b()C | ald | bld).

Because this strategy contains only three steps, the speedup
is %x relative to the non-redundant parallel strategy and
%x relative to the sequential strategy. This system is the
first in a series of systems where additional instances of the
actors which translate and copy can offset the replication
cost of control and payload actors leading to decreased self-
replication time. Speedup occurs because the work of trans-
lating and copying the descriptions of the control and pay-
load actors, ¢(C) and ¢ (D), is divided among all instances
of the translate and copy actors, A and B. A hypothetical

system containing only translate and copy actors
n(A+¢(A)+B+¢(B))

would not benefit from additional A and B instances, since
minimum length strategies for all n require two steps:

(aoao | bobo | ... |an—1an-1 | by—1bp—1) —

(aobo | boag | - .. |an—1bn—1 | bu—1an-1).

Although the example of the asynchronous von Neumann
replicator is compelling, its lack of data dependencies makes
it unusually amenable to speedup via parallelism. Indeed,
it falls into a category of problems often termed, embar-
rassingly parallel. Many problems cannot be decomposed
so easily. Although data dependencies do not necessar-
ily preclude parallel speedup, they sometimes allow only
a more limited form of parallelism termed pipeline paral-
lelism. Consider an asynchronous self-replicating system
governed by the following two rules:

ainZA[+¢(Xj) — Ai+2q§(xj)
bixj:Bi+2¢(x;) — Bi+x;+20(x)).

The first rule consumes a description ¢ (x;) and produces a
pair of reversed descriptions 2 ¢(x;). The second rule con-
sumes a pair of reversed descriptions and produces a pro-
gram x; and two descriptions 2 ¢(x;). In effect, the sec-
ond rule simultaneously translates and copies. Although this
process might seem contrived, it is very natural when pro-
grams and descriptions are represented as stacks that can be
copied in a two stage process using a pair of stacks as an
intermediate representation. Far from being contrived, it is
the process used by the artificial cell described in this paper.
A self-replicating system using this process for translation
and copying contains four data dependencies not present in
the embarrassingly parallel system. These can be abbrevi-
ated as bx > ax, since for all x subproblem bx cannot be
solved before subproblem ax has completed. Despite these
constraints, for n = 2, the following strategy is possible

(aoao ‘ alal) — (aobo | a1b1 |b()ao | blal) —

(b()b() | blbl \aoc | ald) — (b()C | bld).

This strategy yields a 2x speedup relative to the sequential
strategy. Although not quite as large as the %x speedup ob-
served in the embarrassingly parallel system, the speedup in
the parallel pipelined system is still significant.

Artificial Chemistry of Program Fragments

An artificial chemistry is a system of constructible objects
(Fontana and Buss, 1999). Elemental objects called atoms
are combined to form more complex objects by reaction
rules. When objects are embedded in a two-dimensional
space, and are subject to diffusion, the artificial chemistry is
a bespoke physics (Ackley, 2013). A bespoke physics serves
as an abstract interface to a substrate comprised of asyn-
chronous cellular automata (Priese, 1978) that can be sim-
ulated in parallel on a distributed-memory multicomputer.
Realism can be increased by assuming that atoms cannot be
created or destroyed, so that mass is conserved (di Fenizio,
2000). In a typical artificial chemistry, objects are symbols,
strings or graphs and the rules which construct them are im-
mutable. However, when objects can represent programs



and the immutable rules implement an interpreter, an artifi-
cial chemistry can (in effect) construct and apply new rules
at runtime (Fontana and Buss, 1999; Tomita et al., 2007,
Hickinbotham et al., 2011; Buliga and Kauffman, 2014).
These artificial chemistries have increased expressive power.
In functional programming, monads are an abstract data
type representing program fragments (Moggi, 1991). The
monad interface allows program fragments to be composed
and applied to values. By making control idioms implicit
in data types, monads make it possible to build simple
programs exhibiting complex behaviors, e.g., backtracking.
This makes them a powerful tool for defining highly expres-
sive artificial chemistries. In prior work Williams (2016)
described an artificial chemistry where atoms are monadic
combinators and programs implementing non-deterministic
rules are constructed objects. The atoms, which cannot be
created or destroyed, are embedded in a two-dimensional
space and subject to diffusion. Programs composed of com-
binators can construct both spatially distributed objects, and
non-distributed objects of increased mass. Programs them-
selves are objects of this second type. Objects of increased
mass diffuse more slowly, reflecting the real cost of data
transport in the asynchronous parallel substrate. Upon com-
pletion, programs report the number of operations they ex-
ecuted. Because this number is a sum over all paths of ex-
ecution, the real cost of simulating non-deterministic rules
on the substrate is paid for. The asynchronous updates of
local state needed to simulate both the execution of spatially
distributed processes running for different amounts of time
and the diffusion of objects of unequal mass are uniformly
managed using the Gillespie algorithm (Gillespie, 1977).

Parallel Export

Artificial organisms are more complex than self-replicating
systems since, in addition to making their own parts, they
must also segregate their parts from the parts of other organ-
isms (McMullin, 2004). Given a device which implements
this segregation, the system can become a full-fledged or-
ganism by adding (m > 1) instances of a program E that
moves the products of the mother’s translation and copying
processes from mother to daughter:

n(A+¢(A)+B+¢(B))+C+¢(C)+D+¢(D)+m(E+¢(E)).
The organism requires an additional rule governing export:
€iXj: E; +x;+ (P()Cj) — E; —i—x; + ¢(xj)/.

where x; and ¢ (x;)" are a program and its description after
export to the daughter organism. Because export of prod-
ucts can only happen after products are completed, two ad-
ditional constraints on execution order are needed, ex > ax
and ex > bx. Since E exports both a program and its de-
scription, the number of steps required to solve subproblem
e x is twice the number required to solve ax or bx. How-
ever, these steps are of unequal size, and although the export

process is sequential when m = 1, the value of m needed to
avoid an export bottleneck depends on the relative cost of
primitive synthesis and export operations.

Segregation of an organism’s component parts from those
of other organisms can be accomplished in different ways.
If organisms are defined solely as patterns of states inside
compact, connected regions of a parallel substrate, then dis-
tance alone can serve this purpose. A daughter organism can
be constructed at some offset relative to its mother using the
device of a construction arm (von Neumann, 1966; Lang-
ton, 1984; Nehaniv, 2004). Unfortunately, the use of this
device eliminates the possibility of parallel speedup since it
acts as a sequential bottleneck. Irrespective of the fact that
it is spatially distributed and uses pipeline parallelism in its
transmission of signals, the von Neumann automaton, con-
sidered as a whole, is sequential since the daughter automa-
ton is constructed one site at a time at the tip of the moving
construction arm.

Moveable organisms require a different solution. The
most straightforward is to represent them as the connected
components of a graph embedded in the substrate. The work
of Hutton (2004) serves as an excellent example. Although
this groundbreaking work has influenced the thinking of this
author and many others, Hutton’s “cells” are probably more
accurately described as “molecules” since they consist of
a few dozen atoms linked by bonds, lack membranes and
genomes, and are copied by the reaction rules of a complex
artificial chemistry designed solely for this purpose. The
reaction rules implement a sequential and deterministic pro-
cess that results in two half-sized daughters, which are then
completed by means of a growth process that is concurrent
and spatially parallel.

In living cells, segregation is accomplished using mem-
branes. Viewed abstractly, membranes are just topological
spheres that partition space into two disjoint volumes called
inside and outside. The computational problems associated
with the use of membranes as a segregation device were dis-
cussed at length in Williams (2019). Although space consid-
erations preclude a detailed reprise of that discussion here,
its conclusion was that using membranes to partition space
is deceptively complicated, yet also completely unnecessary
since simpler methods for representing membership in com-
pact, spatially embedded sets of objects exist.

Williams (2019) describes one such method in detail. The
footprint of a roving pile is a connected component of a two-
dimensional lattice graph. In the combinator-based artifi-
cial chemistry described in Williams (2016), actors can form
groups which diffuse as a single unit. Groups in the footprint
serve as bases for stacks of groups which form the contents
of the pile. Base groups with one or more missing edges in
the lattice graph form the footprint’s boundary. Programs in
the same stack execute concurrently but not in parallel; they
compete for a shared processor resource in zero sum fashion.
However, programs in different stacks in the same pile exe-



ANNULUS

Figure 2: Topologically identifying the inner boundary of an
annulus and the boundary of a disc creates the footprint of a
roving pile with two compartments called cell and vacuole.
The boundary between compartments is selectively perme-
able. Transport is mediated by a pair of combinators that act
as a transport interface (right). These combinators modify
group state. Groups in the give state can move (by diffusion)
from cell to vacuole while groups in the fake state can move
in the opposite direction.

cute in parallel. So that piles can move and grow, and so that
objects within piles can freely mix, groups in piles undergo
diffusion. The footprint’s shape evolves because groups on
the boundary can move inwards or outwards subject only
to the constraint that such movement cannot disconnect the
pile’s footprint. Although implemented as connected com-
ponents of a lattice graph, the footprints of a roving pile can
be visualized as planar immersions of two-dimensional sur-
faces with boundaries, and they are depicted this way in the
figures of this paper. Observation of a working implemen-
tation shows that roving piles remain flat (low average stack
height) and connected. Smaller piles constantly evolve in
shape while rapidly moving around the space on random
walks. Larger piles extend and retract pseudopod-like exten-
sions but are less mobile in aggregate. In summary, roving
piles look a lot like living cells.

To achieve the results reported in the present paper, the
functionality of roving piles was significantly enhanced be-
yond that described in Williams (2019). The artificial cells
described in this paper are hosted in piles with multiple com-
partments separated by selectively permeable boundaries;
see Figure 2. Using this device, it is possible to implement a
parallel export process that resembles binary fission in living
cells. See Figure 3 and Figure 4.

Parallel Speedup in Artificial Cells

As McMullin (2004) noted, an artificial cell must accom-
plish two tasks. First, it must reproduce its own components.
Second, the components and their duplicates must be spa-
tially organized into separate cells. If the organization pro-
cess is symmetrical, then the separate cells are both daugh-
ters. However, if the organization process is asymmetrical
(as in yeast which reproduce by budding) then the two cells
are distinguishable and can be called mother and daughter.
We implemented an artificial cell that accomplishes the first
of these tasks using a parallel pipeline consisting of six pro-
grams A-F that translate and copy program descriptions; see
Figure 5. The second task is accomplished by programs
X, Y and Z, which manage the organization of components
and duplicates into mother and daughter cells. X consists
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Figure 3: Exploded view in three dimensions of a cell in the
process of binary fission showing a pair of circular apertures
that pierce daughter cell membranes and the septum that di-
vides the cell volume (left). The pair of apertures and the
boundary of the septum are topologically identified along
the course of the contractile ring (red). Adding a second
circular aperture to each membrane at the end opposite the
septum (blue and green) creates a fopological complex that
can be flattened, i.e., immersed in the plane. This complex is
the footprint of a roving pile with three compartments called
mother, daughter and septum. The boundary shared by the
three compartments (red) is selectively permeable. Export
from mother to daughter is mediated by a set of combinators
that act as an export interface (right). Open (or close) change
group states to open (or close), conferring permission to dif-
fuse from mother to septum (or vice versa). This causes the
area of the septum to increase (or decrease), which increases
(or decreases) the length of the shared boundary, controlling
the rate of diffusion from mother to daughter of groups in
the export state.

of a short executable segment followed by a much longer
non-executable segment. When it can do so without split-
ting the mother’s pile, X creates a bud and moves itself to
the newly created daughter’s footprint; see Figure 4 (left).
It then smashes itself within the daughter’s footprint, creat-
ing the daughter’s cytosol from the primitives comprising its
non-executable segment. The cytosol contains the minimum
set of primitive combinators necessary for self-replication.
These are consumed by the A-F pipeline during synthesis
and replenished by imports to the pile. Z closes the septum
after verifying the daughter cell’s viability and Y is a short
non-executable program that is manufactured by the daugh-
ter just to prove its viability to Z. The lengths of the nine
programs comprising the artificial cell are given in Table 1.

Table 1: Program lengths (combinators).

A|B|C|DJE|F|X|Y]| Z
42 |62 | 55163 |74 |192]89| 8 |43

A zipper is an implementation of a data structure that can
be traversed and modified without mutation (Huet, 1997).
All zippers consist of three parts. The front and back repre-
sent the parts of the data structure that 1) have already been
traversed; or 2) have yet to be traversed. The focus is an item
between the front and back that can be inspected or replaced.



Figure 4: Exploded view of mother cell with bud and pla-
nar immersion of complex (left). The septum’s footprint is
a square of size 1 x 1, while the mother and daughter cell’s
footprints are annuli with square inner boundaries of size
1 x 1 (red). The outer boundary of the daughter cell’s foot-
print is a square of size 3 x 3 (blue). Significantly, the foot-
prints of the daughter and septum can be created using O(1)
operations in a single Moore neighborhood of the mother’s
footprint. Exploded view of mother and daughter cell im-
mediately prior to fission and planar immersion of complex
(right). The footprint of the septum is a square of size 1 X 1,
while the footprints of the mother and daughter are annuli
with square inner boundaries of size 1 x 1. The group com-
prising the septum’s footprint can be expelled and the re-
sulting holes in mother and daughter filled using O(1) oper-
ations in the septum’s Moore neighborhood.

The input to the synthesis pipeline is a zipper representation
of ¢(x). A pair of reversed program descriptions 2 ¢ (x) can
be constructed by traversing this zipper. The process begins
when A copies the front of the input zipper. The front ini-
tially consists of a single combinator. In each step of the
traversal, B pushes the focus onto the mother front and a
primitive from the neighborhood (with matching type) onto
the daughter front; the back is then popped to create a new
focus. This is repeated until the back consists of a single
combinator and the mother and daughter fronts each hold a
reversed description ¢ (x). These are (in turn) reversed by a
second traversal of the zipper in the opposite direction by £
yielding ¢ (x) and ¢ (x)’. Significantly, during this traversal,
E also makes an instance of x’. The time required for syn-
thesis by the A-F pipeline is dominated by stages B and E
which require time proportional to the length of ¢ (x). All
other stages require constant time.

The last stage in the synthesis pipeline is implemented by
F, which constructs a group in the export state containing x’
and ¢ (x)’ and restores the mother zipper ¢ (x) to the confor-
mation needed by A, which implements the first stage in the
pipeline. However, A will not actually see it until after repli-
cation completes, since F' also changes the state of the group
containing the mother zipper @(x) to open. This causes it
to migrate to the septum which improves the efficiency of
the synthesis process by reducing contention while also pre-
venting the synthesis of unneeded instances of x’ and ¢ (x)’.
Translation of ¢ (Y)' by A’-F’ in the daughter cell causes Z’
to migrate to the septum. Once in the septum, Z' returns the
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Figure 5: Six stage parallel pipeline for translating and
copying zipper representation of description ¢(x) showing
changes to zipper conformation effected by programs A-
F. Unlike the pipeline described in Williams (2019), this
pipeline produces both program x and description ¢(x) in
a single cycle. This permits export to be implemented as a
parallel process.

zippers ¢ (x) stashed there to the mother, where they reenter
the A-F pipeline, restarting the mother’s self-replication pro-
cess. Of course, by this point, the daughter’s self-replication
process is already in progress; see Figure 6. When Z' is the
last actor remaining in the septum, it expels itself from the
pile by closing the septum, completing the final operation in
the construction of the daughter cell; see Figure 4 (right).

It should be noted that this differs from the process de-
scribed in Williams (2019) because the E stage of the
pipeline in that process reversed but did not copy. The ad-
vantage of the new pipeline is that both x' and ¢(x)’ are
produced in a single cycle. Significantly, it is this modifi-
cation which permits export to be implemented as a parallel
process. To appreciate this, recall that the cell described in
Williams (2019) used a set of actors contained in a single
group as a checklist to ensure that the daughter received the
full complement of programs and descriptions. The fact that
the checklist was non-distributed yet needed to be updated
by any programs implementing the export process necessi-
tated that the process be sequential. The fact that x' and
0 (x)" are exported in a single group in the new cell means
that the daughter can demonstrate that it has received the full
complement of programs and descriptions simply by using
its synthesis pipeline to translate and copy the description of
a short dummy program ¢(Y)’. Because programs and de-
scriptions are exported in pairs, its ability to do this demon-
strates that it possesses not only A’-F’, X’ and ¢(Y)’, but
also ¢(A)'-¢(F), ¢(X)" and Y’. Finally, because Z' closes
the septum but migrates there from the daughter, fission can-
not occur unless the daughter also possesses ¢ (Z)'.
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Figure 6: Schematic diagram of artificial cell. Mother
(green) and daughter (blue) are depicted immediately prior
to fission. After duplication by pipeline implemented by
methods A-F, zippers ¢ (x) representing the genome migrate
to the septum (red) to prevent further duplication. Synthe-
sis of Y” by A’-F' triggers Z', which returns zippers to the
mother while closing the septum (red). Parallel speedup re-
sults from extra copies of B and E.

The artificial cell’s replication time as a function of the
number of copies (n) of the B and E programs and descrip-
tions was measured experimentally. All trials were repeated
ten times. Significant decrease in replication time relative to
n =1 was observed for 1 < n < 7, consistent with parallel
speedup. This speedup occurred despite the increased size of
the artificial cells; see Figure 7. Replication time continued
to decrease with increasing n before reaching a minimum
value at n = 5 followed by a slight increase at n = 6.

To ascertain the speedup relative to a sequential imple-
mentation of an otherwise identical process, an artificial cell
was constructed that combined the A-F programs into a sin-
gle method together with programs for construction of the
daughter cell’s cytosol and export. This method and its de-
scription formed a group that diffused as a unit within the
roving pile. Because of its simplified control and export
processes, this sequential artificial cell had a significantly
reduced size (734 combinators). Despite its reduced size,
the sequential cell’s replication time (405 x 10* operations)
exceeded the replication times of much larger parallel cells
(> 1872 combinators) for n > 3. This demonstrates that spa-
tial parallelism can pay for the increased complexity and
runtime overhead associated with its use, resulting in arti-
ficial cells of increased complexity and fitness.

The export of redundant genes from mother to daughter is
not completely reliable. Unlike Nakamura (2010), the par-
allel computation described in this paper is subject to race
conditions that can potentially affect its result. Because they
are unnecessary for synthesis of Y”, it sometimes happens
that unfinished copies of extra B and E are in the mother
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Figure 7: Artificial cell replication time in 10* operations
(left scale) and mass in combinators (right scale) as func-
tions of number of copies of B and E. Error bars show +o.

when the septum closes. Since X is significantly longer than
both B and E, this happens only rarely. However, when it
does, the number of copies of the affected gene in the current
daughter decreases by one and the number in the next daugh-
ter (its younger sister) increases by one. It follows that, in a
large population, there will be some variation in np and ng,
the number of copies of the B and E genes. Given sufficient
time, natural selection would presumably cause the means to
converge to values maximizing the fitness tradeoff between
increased size (bad) and increased parallelism (good). Char-
acterizing the distribution of np and ng in a large population,
and potentially observing their convergence over time to op-
timum values, is a subject for future work.

Conclusion

Reproduction by spatially distributed asynchronous parallel
processes is essential to the long term goal of demonstrat-
ing open-ended evolution of artificial organisms of increas-
ing complexity. Despite this fact and the extensive literature
on self-replicating systems, there has been little research on
systems that replicate using parallel processes. This pa-
per described artificial cells that replicate using spatially
distributed asynchronous parallel processes defined using a
combinator-based artificial chemistry. Larger cells that re-
produce in less time than smaller cells were demonstrated.
This was achieved by adding extra copies of programs im-
plementing the limiting steps in the parallel pipelined pro-
cess used by the cells to synthesize their component parts.
Significant speedup was observed, despite the increased
complexity of control and export processes necessitated by
the use of a parallel replication strategy. The similarity be-
tween the parallel speedup observed in artificial cells with
increased numbers of programs implementing limiting steps
in their component synthesis pipelines and that of bacterial
cells with increased numbers of ribosomes is noteworthy.
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