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Abstract

We derive an analytic expression for the distribution of contours x(¢) generated
by fluctuations in %(t) = 0x(t)/0t due to random impulses of two limiting types.
The first type are frequent but weak while the second are infrequent but strong. The
result has applications in computational theories of figural completion and illusory
contours because it can be used to model the prior probability distribution of short,
smooth completion shapes punctuated by occasional discontinuities in orientation (i.e.,
corners). This work extends our previous work on characterizing the distribution of
completion shapes which dealt only with the case of frequently acting weak impulses.

1 Introduction

In a previous paper[1] we derived an analytic expression characterizing a distribution of short,
smooth contours. This result has applications in ongoing work on figural completion[2]
and perceptual saliency[3]. The idea that the prior probability distribution of boundary
completion shapes can be characterized by a directional random walk is first described by
Mumford[4]. A similiar idea is implicit in Cox et al’s use of the Kalman filter in their
work on grouping of contour fragments[5]. More recently, Williams and Jacobs[6] introduced
a representation they called a stochastic completion field—the probability that a particle
undergoing a directional random walk will pass through any given position and orientation
in the image plane on a path bridging a pair of boundary fragments. They argued that the
mode, magnitude and variance of the stochastic completion field are related to the perceived
shape, salience and sharpness of illusory contours.

Both Mumford[4] and Williams and Jacobs[6] show that the maximum likelihood path
followed by a particle undergoing a directional random walk between two positions and
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Figure 1: Amodal completion of a partially occluded circle and square (redrawn from Kanizsal[9]).
In both cases, completion is accomplished in a manner which preserves tangent and curvature
continuity at the ends of the occluded boundaries.

directions is a curve of least energy (see Horn[7]). This is the curve that is commonly
assumed to model the shape of illusory contours, and is widely used for semi-automatic
region segmentation in many computer vision applications (see Kass et al.[8]).

The distribution of shapes considered by [1, 4, 5, 6] basically consists of smooth, short
contours. Yet there are many examples in human vision where completion shapes perceived
by humans contain discontinuities in orientation (i.e., corners). Figure 1 shows a display
by Kanizsa[9]. This display illustrates the completion of a circle and square under a square
occluder. The completion of the square is significant because it includes a discontinuity in
orientation. Figure 2 shows a pair of “Koftka Crosses.” When the width of the arms of
the Koftka Cross is increased, observers generally report that the percept changes from an
illusory circle to an illusory square[10].

Although the distribution of completion shapes with corners has not previously been
characterized analytically, the idea of including corners in completion shapes is not new.
For example, the functionals of Kass et al.[8] and Mumford and Shah[11] permit orienta-
tion discontinuities accompanied by large (but fixed size) penalties. This follows work by
Blake[12] and others[13, 14, 15, 16] on interpolation of smooth surfaces with creases from
sparse depth (or brightness) measurements. More recently, Belheumer[17] (working with
stereo pairs) used a similiar functional for interpolation of disparity along epipolar lines.
Belheumer’s approach is especially related because he derives his functional by considering a
distribution of surface cross-section shapes characterized by a mixture of random processes—
smoothly varying disparity is modeled by a one-dimensional Brownian motion while depth
discontinuities are modeled by a Poisson process.

In this paper, we derive a very general integral-differential equation underlying a family of
contour shape distributions. This family is based on shapes traced by particles following any
of several default paths modified by random impulses drawn from a mixture of distributions
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Figure 2: When the width of the arms of the Koffka Cross is increased, observers generally
report that the percept changes from an illusory circle to an illusory square (see [2]).

(e.g., different magnitudes, directions, rates). For our figural completion application, we
are especially interested in a shape distribution based upon straight line base-trajectories in
two-dimensions modified by random impulses drawn from a mixture of two limiting distribu-
tions. The first distribution consists of weak but frequently acting impulses (we call this the
Gaussian-limit). The distribution of these weak random impulses has zero mean and vari-
ance equal to 03. The weak impulses act at Poisson times with rate R,. The second consists
of strong but infrequently acting impulses (we call this the Poisson-limit). The distribution
of these strong random impulses has zero mean and variance equal to o), (Where o3 >> 7).
The strong impulses act at Poisson times with rate R, << R,. As in our previous work,
particles decay at an average rate of 1/7. The distribution can be summarized by four pa-
rameters which are of constant value for a given application.! The effect is that particles
tend to travel in smooth, short paths punctuated by occasional orientation discontinuities.

2 Approach

Suppose we are given a collection of contour segments, for example, as would be present in
an image of objects occluded by other objects. Our goal is to predict all reasonably likely
completions of these contours and their relative likelihoods. If x; is the location of the end
of one contour segment, and x5 is the beginning of another, then one candidate for the most
general prior between x; and x5 would be given by:

x(t) =x1 + Y Axeu(t —t), t1 <t;<ty, x(t2) =%z
l

where u(-) is the unit step function, i.e., u(t) = 0 when ¢ < 0 and u(t) = 1 when ¢t > 0
and the displacements Ax, are stochastic with some zero-mean distribution. The times ¢,

! There are four (not five) because we combine o> and R, into a single parameter, T = Ry0..
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would also be stochastic, e.g., Poisson with some (possibly time varying) rate R(¢). Such
curves would resemble the tracks of classical Brownian particles connecting x; and x,. While
this represents the most general prior for a continuous curve, lacking any bias, the expected
contour will be simply

<X(t) >= X1+X2(t—t1)/(t2—t1), 1 <t<ty

which in space is independent of ¢; and %5, and the details of the distribution of the (Axy, t;).
For ordinary diffusion in one and two dimensions, all points can be reached with probability
one. For this reason, such completions are both degenerate and sterile, and will not be
considered further.

Except at isolated points (corners), most boundaries are continuous in position and ori-
entation. Thus, if in the above example, #; and 6, are the directions at x; and x5, then two
additional boundary conditions enter:

dx/ds = [cos 61,sin 0] at x; and dx/ds = [cos b, sin O] at x;

where s is the distance along the curve x(s) as in differential geometry. Between x; and x; one
would like to write dx/ds = [cosf(s),sin f(s)] where 0(s) is a normally distributed random
variable with zero mean (i.e., f(s) is a Brownian motion). See Mumford[4] and Williams
and Jacobs[6]. Note that speed is assumed to be constant. In this paper, we consider more
general contours x(t) with arbitrary parameterization (¢), and for each component ¢, set

dr,(t)/dt = ig(t), ¢=1,...d

where the #,(t) are independent random variables. Each &, changes by Ay at ¢, according
to a zero-mean distribution on Ag,, while the ¢, occur at a mean rate of R,(t), for example,
according to Poisson statistics. This results in what is probably the least constrained, simple
prior which captures the essential properties of the missing contour and its relative likelihood:

t
x(t) :xl—l-)'cl(t—tl)+/tdt’ZA}'c¢u(t’—te), <t <t
1 V4

where x(t2) = xg,%(ts) = Xg. 2 Clearly %x; and %, will have directions #; and 0s.

3 Prior Distribution of Smooth Completion Shapes

We define P(2 | 1) to be the likelihood that a contour, x(t), is at xo with X, for ¢ = 1,
given that it was at x; with %; for ¢ = ¢;, averaged over all x(¢) subjected to random
impulses. While we calculate P(2 | 1) directly in the next section (for a mixture of frequent-
weak impulses and infrequent-strong impulses), it is of value to derive an integral-differential
equation for P(2 | 1) which includes all types of impulses.

2More generally, and for those who eschew abruptness, we will broaden the A%, impulses by employing
a stochastic “force” of the form F; = 3", f(t — t;), where the f(-) are “smooth” functions of ¢.
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Figure 3: Examples of stochastic curves for various impulse rates, Ry, and impulse magnitudes,

|vg|- The most relevant region of this shape space is spanned by a mixture of frequent-weak
(Gaussian) and infrequent-strong (Poisson) processes.

The transition probability, P(2 | 1), embodies three aspects of contour distributions: 1)
boundary conditions; 2) base-trajectories; and 3) impulse statistics. Boundary conditions
constrain possible contours at keypoints® by specifying at least one of x;,%;, X;, etc. We find
the choice of (x;,%;) to be most useful, but other applications may require other combina-
tions. A variety of base-trajectories can represent the contour at times between the arrival
of random impulses. We have found straight lines to be the most useful in our applica-
tion. In addition to boundary conditions and base-trajectories, the contour distributions
are defined by impulse statistics. Random impulses have the form, x(¢) = Y, veu(t — tge),
which includes process, k£, with impulses, v, occuring at Poisson distributed times, t,, with
mean rate, Ry (t). While we focus here on only two processes, frequent-weak (Gaussian) and
infrequent-strong (Poisson), an entire spectrum between these limits is also available (see
Figure 3).

We now turn to the calculation of an integral-differential equation for P(2 | 1). Recall

3We use this term (adopted from [18]) as a generic term to denote position-velocity constraints derived
from the image.



that P(2 | 1) is the probability that given x(¢;) = x; and %(¢;) = %1, then x(¢;) = x5 and
}.((tQ) = ).(2 for tz > tll

P(21]1) = P(xg,%o,ts | x1,%1,11)
= < (S(X(tg) — XQ)(S(}.C(tQ) — 5(2) >1

where < - > is an average over all contours matching the boundary condition x;,%; at ¢;. For
conciseness, in the following expressions we write P(x, X, t) instead of P(xg, Xo, 2 | X1, X1, 1)-
In these expressions, (x,X) refers to (xs,%3), and the boundary conditions, (x1,%;), are
implicit. We find (using §'(t) = 94(t)/0t):

atP(X, }‘(, t) =< ).Ctél(xt — X)(S().Ct — ).() >1 + < ité(xt — X)él(}.(t — }.() >1

= % 0 < 8(x; — X)3(%k, — %) >1 —0x < %0 (%, — X)3(%; — %) >

where x; = x(t), X; = %(¢) and X; = X(¢). While the delta function, 6(%x; — %), forces the first
expectation value to be X%, the second expectation value is less readily specifiable.* From
the form and distribution of the random impulses, it follows that X; = >4, vi0(t — tge). As
the occurrences of the fluctuations are independent, it is reasonable to take their average
instantaneous rate, Ry(t), to be independent of the number of fluctuations, Ny, of type,
k, in the interval of interest. This leads us to the standard Poisson distribution for the
probability of Ny independent fluctuations, and simplifies the resulting equation. Should
this be an over-simplification, we could still work out P(2 | 1) as discussed in [1]. These
considerations (together with a decay term to reduce the contribution of long contours) result
in the following integral-differential equation for P(x,x,1):

O P(x,%,t) = —%x - 0« P(x,%,t) — X14 - 03 P(x,%,t) — P(x,%,t)/7
=3 [ ROt~ &) - 0:P(x — [ dGuufi(t - €)%~ [ dCrufilt —©),1)
k
where x;; is x(¢) for impulse-free conditions, x(¢;) = x; and %(¢;) = %x;. For straight line
base-trajectories, Gy = (t* — t')u(tt — t')I and therefore X;; = 0. This causes the second

term to drop out. Then (since the details of the elementary force, fi(¢), are unlikely to
matter) we assume that vy = [ dt fi(¢), and obtain:

OP(x,%,t) = —% - 0x P(x,%X,t) — P(x,%,t)/7 — D>_ Ry (t)vi - OxP(x, % — v /2, 1)
k

The time evolution of the conditional probability at (x,%) is governed by three factors: 1)
advection; 2) decay; and 3) diffusion. The effect of the advection term is that probability

4In Appendix A we calculate the second expectation value in terms of the probability distribution of the
number of times an elementary “force,” fi(t — tx¢), acts in a given interval of time. Though exact, for our
present purposes, the expression is unnecessarily complicated.



mass at (x,%) is transported with velocity %X. The effect of the decay term is that the to-
tal probability mass decreases exponentially with increasing time. It is the diffusion term
which is most important. It expresses the fact that the random impulses drive the distri-
bution through its velocity-gradient averaged over the duration of the impulse. In the limit
of impulses of short duration, this average can be approximated by the velocity-gradient
evaluated at x — vy /2 (i.e., the average velocity before and after the fluctuation). For small
impulses, vi, and for stationary processes (i.e., for constant Rj), we obtain the following
simple differential equation for the conditional probability:

8tP0:—}'('axPo-i-TaiP()/Q—PO/T, T:ZRkkak
k
which for isotropic impulses, becomes:
(9tP0 = —).C'axPO —{—TaiPO/Q —P()/T

where T is the velocity-variance-rate parameter, analogous to the position-variance-rate pa-
rameter (diffusion coefficient) of transport theories.> This Fokker-Planck equation is similiar
to the equation described by Mumford[4]. The only difference is that the diffusion term in
our equation involves velocity rather than orientation. One consequence of this difference is
that our equation separates, so that Py(2 | 1) = exp(—t/7)Poz(2 | 1)Poy(2 | 1)..., the product
extending to as many dimensions as are of interest. Solving, we find for Py, (2 | 1):

exp[—12,/2Tt] exp[—6(za — vyt)?/Tt]

VTt L\ /xTe/6

and similarly for y, z, ..., etc. Here v, = (29 +31)/2, t = to — t1,891 = &9 — &1, To1 = Ty — T1,
and T arises from setting T;; = T;0;;. The expression shows clearly the contribution of
velocity diffusion, and the persistence of the initial velocity and anticipation of the final
velocity in the position dependence.

Py (2| 1;t) =

4 Inclusion of Corners in Prior Distribution

This formulation is clearly not just limited to frequent-weak impulses—it contains the full
spectrum of stochastic contributions to x;. While some problems may call for this flexibility
in full, it turns out that corners (discontinuities in orientation) can be included by using a
mixture of frequent-weak and infrequent-strong impulses. In fact, for our purposes, it will
suffice to include only zero or one large impulse per contour.

5In these expressions, the zero subscript denotes the fact that the probability, P,, is averaged over
trajectories modified by zero impulses of the large-infrequent type (i.e., the pure Gaussian case). In the next
section, we will consider probabilities averaged over trajectories modified by a mixture of weak, frequent
impulses and a single impulse of the large, infrequent type. This mixed probability will be denoted, P; .



Previously[1] we showed how P(2 | 1) =< 6(x(t2) —x2)d(X(t2) —%2) >1 could be obtained
from an evaluation of the characteristic functional ®(k;) =< expi [ dtk; - x, >; which since
t
X(t) =X+ G(t, tl)}.il —+ dth(t, t,)F(tl)
t1

in which F(t') is the stochastic force, it sufficed to determine

¢(pr) =< eXp(i/dt’pt,Ft,) >

with py = [ dt k,G(t,t") where G(¢,t') = 0 for ¢ < ¢'. This results in the following expression:
< exp(i [ dt p-Fo) >=expl [ dg Y- Ri(€)(exp(i [ db i . filt — €)) ~ 1)]
k

where we used F; = >, 3, fi.(t — txe), the tx,’s being governed by a Poisson process of rate
Ry(t). Although one can use this expression as given (as we do in Appendix A) several lim-
iting cases provide significant and useful simplifications. The most common is the Gaussian
limit of small-frequent impulses, which we have already developed, and in which case

. 1
< exp(z/dt Pt - Ft) >= exp(—i /dt Pt - T- pt)

where T = 3", Ryvyvy when fi(¢) = v0(¢).° The opposite limit is large-infrequent impulses.
These are necessary if we are to include discontinuities in dx(t)/dt (i.e., corners). For the
case in which a single, large impulse can act in addition to the numerous, small impulses
of the Gaussian case, we proceed as follows. Returning to the more general of the above
expressions for < exp(i [ dt p; - F;) >, we expand the exponential in 3", Ry (&) to first order
in those processes with low rates, i.e., >, Rs(§) where R,(€) is small. In this way, we include
only zero and one large scattering events, obtaining the factor:

1+ Es f dSRs(g) eXp[lfdt | S fs(t - 6)]
1+ %, [ dER;(€)
Again taking the impulses, f;, to be of relatively short duration and including an average

over a Gaussian distribution of variance 012: (i.e., the least constrained zero-mean distribution
of a given variance) we obtain the factor:

1+ [ d€R,(€) exp(—3Pe - 0,  Pe)
1+ [dER,(E)
normalized to unity for ps = 0 and where R,(§) is the mean rate of this process, i.e.,

R,(€) = X5 Ry(€). Here o7 has the dimensions of (velocity)® while T has the dimensions of
(velocity)?/(time). So finally we find that

B . _exp(—3 [ditp; - T - py)[1+ [ dER, (&) exp(—5P¢ - 07 - Pe)]
B(p) =< expi [ dt pi-F) >= L TR

6Since the vy are small, the exponential in which they occur can be expanded to second order: the zero
order term cancels the “~1,” and the first order term is zero since the total force has zero mean.




So that the probability of two or more impulses is negligible, it is necessary that [ déR,(§) <<
1. Using the corresponding result in Appendix A for the Poisson case, we find for P(2 | 1
in two dimensions, the expression:

P(2 | 1 t) _ Pﬂm(2 | 1§t)P0y(2 | 1§t)+f(§ ngp(f)le(Q | I;t, f)Ply(Q | 1;t, 5)
e 1+ [ dER,(€)

exp[—(42/D + B2/ H)/2T)
orTVDH
Vt? + ElEa(t — &) + 31€]

-exp(—t/T)

Plac(2 | 1;t,§) =

Aw: - 3 Bw:
T21 t—i—fp T21
4/12 13/3 — 12 2t

t+§p

where £, = az /T and with analogous expressions for P;,. Note that in the expression for
o(pt), that az is taken to be diagonal. The time, &, is the time of the single, large, scattering
event. We observe that the Poisson process will dominate for ¢ << &,.

The above result for zero and one rare event exhibits several important dependencies.
First, recall that T is the velocity-fluctuation rate. Thus, for Tt < az (i.e., t < &), the
frequent-weak process will be less effective than a single strong but rare event. This will be
the case for higher velocities (i.e., smaller time intervals). Second, if R,(£) is taken to be a
constant, R,, then R,t will control the number of rare events (preferably R,t << 1). We
note that it would be possible to derive the distribution for one rare event by appropriate
joining of two Gaussian processes, but integrals over all intermediate positions and velocities
would be required.

Although the above expression for P(2 | 1) involves a number of symbols, there are in fact
only four basic parameters: T, §,, R, and 7. The values of these four parameters determine
the shape distribution and remain constant for a given application. The first parameter,
T = Rgag, is the velocity diffusion coefficient.” The smaller T" becomes, the more the most
likely completion will dominate the distribution. Consequently, 7" controls sharpness. The
second parameter, &, is equal to ag /T. As mentioned above, if the time associated with
the most likely completion is significantly less than &,, then there is not enough time for
the frequent-weak impulses to modify the particle’s path to match the second boundary
condition. Since this factor is in the exponent of the probability expression, infrequent-
strong impulses become favored with rate proportional to the third parameter, ,. Finally,
the fourth parameter, 7, determines the rate at which particles decay—the smaller the value
of 7, the smaller the contribution of long contours. In practice, we first set 7" to achieve the
desired sharpness in . We then adjust &, to suppress the Gaussian component in P; and
adjust IR, to achieve the desired mixture of smooth completions and corners.

"Tronically, since only the product of R, and 0'3 appears in the equations, in the Gaussian-limit, the

distribution of the random impulses, v, is arbitrary while in the Poisson-limit, the distribution of the
random impulses, v, is Gaussian.



5 Sampling and Scale Invariance

Strictly speaking, the above expressions apply only to the continuum. In practice, the
expressions must be evaluated on a discrete grid. To reduce aliasing and other artifacts asso-
ciated with discrete sampling, the transition probabilities can be convolved with broadening
functions, for example

P(x2, Y2, Lo, 92 | 371,,%,371;91)
[ [Tay ["ai ["ai B0 B(.0}) B, %) B 03)-
plry — o',y — ¢ ko — 3,92 — 9 | 21, 91,21, 91)
where E(r',02) = exp[—(r' 2/202)]/,/2702.

In addition to sampling, a second consideration is scale-invariance. Ideally, the transition
probabilities should remain invariant as the scene is uniformly scaled, that is, P(2 | 1; t)
should remain constant as |xs — x1| — 7|x2 — x1|. Unfortunately, the expressions given
previously do not possess this property. However, if the speeds are increased by a factor of
~ and the velocity diffusion coefficient is increased by a factor of 72, then the expression for
P(2 | 1;t) is invariant except for an overall factor of v*. Stated differently, P(2 | 1;t) —
v*P(2 | 1; t) when X; — y%;, %9 — 7%y and T — *T. While this may at first seem rather ad
hoc, it is actually quite reasonable—increased displacements require correspondingly higher
speeds. Likewise, the diffusion coefficient must increase to effect the equivalent change in

particle trajectories. The factor of 4* is simply the ratio of sampling volumes in the scaled
and unscaled systems (i.e., the Jacobian):

P(x2, Y2, T2, Y2 | T1, Y1, 1, 91) =
g [ ar [ ai [ dit Bl ~262) E(.~262) (i ~262) B ~202
vt - T y i Y E(z',vy70y) E(y',v70,) E(i',v703) E(Y, 7 0y)-
— Q0 —oQ —Q —oQ
p(x2 — ', yo =y 32 — 2 90 — 9 | 1,91, 34, 91)
where E(r',v%02) = exp[— (1" 2/27%0?)]/\/27y202. These considerations lead to the following

scale-invariant expressions for Py, (2 | 1; t) and Py,(2]1;t,£):

exp[—(6/7*Tt) (w1 — vat)?*(1 — (1 4+ T1%/1207) )]

Pa(2] 158) = V2m(02 + T13/12)
exp[=(1/2*T0)i3 (1 — (1 + Ttfod) )]
21(oz + T) p{t/7)
P 1te) = SPEAY2TD)0— (14 T/ )]

21 (02 + TD)
exp[—(B;/2y*TH)(1 — (1+TH/03)™")]

2m(0? + TH) " exp(=t/7)

10
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Figure 4: Two completion fields related through a scale transformation. If the distance between
the keypoints, [xo — x1/|, and the scale of the filters used to compute the keypoints, |%;| and |%X2|,
are increased by a factor of 7y, then T must be increased by a factor of 2.

From these and the corresponding expressions for the y dimension we obtain Py(2 | 1;¢) and
Pi(2 | 1;t). We note that the ? Jacobian factors in the above expressions are cancelled by
+? factors in the denominators.

We must now address the problem of choosing . Recall that there are four parameters
which define the distribution: T, R,, &,, and 7. The last three are purely time-like and
remain invariant. Only, 7T, which is proportional to the square of the magnitude of the
random impulses, must be scaled by a factor of 2. If |%;| and |%,| represent the spatial
scales of the filters used to compute the keypoints, then letting v = (|%1| + |%2])/2 is a
natural choice since the larger the velocity, the larger the random impulses which must
modify it. The result is that the transition probabilities remain invariant as both the scene
and the filters are uniformly scaled (see Figure 4).

6 Stochastic Completion Fields

The magnitude of the stochastic completion field at (n,7) is defined as the probability that
a completion, with a distribution of shapes given by P(2 | 1), will connect two keypoints
via a path through (n,7). The stochastic completion field originating in an arbitrary set
of n keypoints can (in turn) be expressed as the sum of n? pairwise fields. In this section,
we describe the problem of computing the completion field for a pair of keypoints, and give
example completion fields for a range of speeds.

To accomplish this, we first consider the distribution of contours which begin at the first
keypoint, (xi,%;) at time ¢;. We then consider the fraction of those contours which pass
through the fieldpoint, (n,7) at ¢ and then through the second keypoint, (x2,%2) at time t,
(where t; > t > t1). Integrating over all t; (—oo < t; < t) and ¢, (¢t < £y < 00), we find

11



the relative probability that a completion from (x;,%1) to (x2,%2) includes (7, 7), giving the
value of the stochastic completion field, C(n, 7). Since the entire history of the contour at
t is summarized by (n,7) (the velocity fluctuations being independent), the probability of
(x1,%1) = (1,1) = (x2,%2) factors into a product of probabilities for (x;,%;) — (n,7) and
for (n, ) — (x2,%a):

P((x2, %2, t2), (0,71, 1) | (x1,%1,1)) = P((xa,%2,22) | (m,0,)) - P((n, 1, %) | (%1, %1,1))

Figure 5 (a-d) shows four completion fields due to a pair of keypoints positioned on a
horizontal line and separated by a distance of 80 pixels. In each subfigure, the orientation
of the right keypoint is 130° and the orientation of the left keypoint is 50°. The speeds, v,
in Figure 5 (a-d) are 1,2,4 and 8 respectively. The values of the four parameters defining
the contour shape distribution are: T = 0.0005, 7 = 9.5,&, = 100 and R, = 1.0 x 10 . The
completion fields were computed using the expression for P(2 | 1) given in Section 4 and using
the integral approximations for P’(2 | 1) described in Appendix B. Figure 5 (a-d) displays
images of size 256 x 256 where brightness codes the logarithm of the sum of the completion
field magnitude evaluated at 36 discrete orientations (i.e., at 10° increments). As the speed
is increased, the relative contribution of P, and P; reverses. This results in a transition from
a distribution dominated by smooth contours to a distribution consisting predominantly of
straight (or nearly straight) contours containing a single orientation discontinuity. When the
distribution is dominated by Pj, the effect of aliasing in orientation becomes evident.

7 Conclusion

In our previous paper[1], we assumed that the statistics of occluded shapes could be modeled
by minimally-constrained distributions over all paths. We derived an analytic expression for
the shape, salience and sharpness of illusory contours in terms of the characteristic function
of the simplest of these distributions (i.e., Gaussian) and applied this expression to well
known examples from the visual psychology literature. In this paper, we extended our work
in several important directions. First, we have derived a general integral-differential equa-
tion including the full spectrum of random impulses and which we believe will be useful for
modeling a broad family of shape distributions. We have also derived an analytic expression
characterizing the distribution of completion shapes with corners using a mixture of Gaus-
sian and Poisson limiting cases. Finally, we have presented scale-invariant forms for these
expressions.

Appendix A: Expected Distributions

For x; = xy4 + [dt'GipFy,Fy stochastic, Fy = Y5, fi(t — tre), and x3: = x1 + Gy Xy we
desire

o(k;) =< exp(i/dt ki - x¢) >1= exp(i/dt ki - x11) < exp(i/dt' py - Fy) >

12
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Figure 5: Stochastic completion fields (logarithm of magnitude) due to a pair of keypoints
positioned on a horizontal line and separated by a distance of 80 pixels. In each subfigure, the
orientation of the left keypoint is 130° and the orientation of the right keypoint is 50°. The
speeds, v, in (a-d) are 1,2,4 and 8 respectively. The values of the four parameters defining
the contour shape distribution are: T = 0.0005, 7 = 9.5, &, = 100 and R, = 1.0 x 107°.
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with py = [ dtk,;Gy . So long as the tg,’s are independent, we can write

¢(ps) =< eXp(i/dtpt -Fy) >=

I3 Pul [ dte Rt exp(G [ dt pifilt — 1))/ 20)™

where A\, = [dt,Ri(tx) (see [19, 20, 21]). Here Py, is the probability of N, events in the

time interval of interest, and Ry the average rate of these events. To derive < X;,d(x(t2) —
X2)d(X(t2) — %X2) >, for the integral-differential equation in the text, we must calculate at

n=0~0:
d . D\ .
_7/3/ K e—ll‘-'/-xg/ C_ZA.)Q@(kt)
onJ (2m)3 (2m)3

for k; = k,.(t) + no"(t — t2) and k,(t) = KO(t — ta) — Ad'(t — t3). Alternatively, p; =
pr(t) + né(ty —t). Setting p(t) = pr(t) = KGy, ¢ + A0, Gy, and k(t) = k,(¢) results in
P(x9,%2,1s | X1,%1,%1). Inserting these p(¢) and k() in the expressions for ® and ¢ above
and working out the 7 items, we find for the case that the Py are Poisson:

< itgé(X(tg) - $2)5().((t2) — ).(2) >=
X1 P(x2, %o, 12 | X1,%1,11) + Z/dek(f)fk(t - §)
k

P(xs — / dt' G B (£ — €), % — / dt'0,Go (¥ — €), 2 | X1, %1, 1)

We need not take the Poisson limit of Py,, for we could work directly with ® and ¢ above,
but their representation in an integral-differential equation is unnecessarily complex. We
note that the above is valid for general Poisson processes—weak/strong, frequent/infrequent
and anything in between. To evaluate P(2 | 1) for the Poisson case one simply calculates
the above without the (—i0/0n) and for n = 0, proceeding in a manner analogous to [1].

Appendix B: Integral Approximations

The expressions we have derived (thus far) depend on time, i.e., they give the probability that
a particle will be at some position and velocity, (x2,X2), at time ¢ given that the particle was
observed at some other position and velocity, (x1,%1), at time 0. We refer to this quantity
as P(2 | 1;t). However, if we are really interested in computing the probability that two
boundary fragments are part of the same object, then we are more interested in the integral
of P(2 | 1;t) over all future times. We refer to this quantity as P'(2 | 1) = [° dtP(2 | 1;1).
To derive an expression for P'(2 | 1), we must not only approximate this integral analytically,
we must also approximate the integral over the time of the single large scattering event, &,
in the expression for P(2 | 1;¢).
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To begin, we divide the expression for P'(2 | 1) into two terms, Iy and I;, and use
the method of steepest descent separately on each part. This requires one steepest descent
approximation for [, and two steepest descent approximations for I; (which contains the
additional dependency on &):

tmam
P'@2]1) =/ dt P(2 | 1;1)
0

/tmmdt Po(2 | 1;t) + R, [LdEP(2 ] 151,€)
A 1+ Ryt

tmaz 1 tmaz R t
- dt P2 | 1:¢ / at — [ aep(2]1:¢,
/0 1+ Ryt (2 151) + 0 1+ Ryt' Jo $h(2] &)

= I+ 1

The first integral to be dealt with is that over the time of the single large scattering event:
t’
In(t) = R, [ deP(2]|1;7,€)
0

Here & enters the integrand only through the D and A terms in the expression for P;(2 |
1;t,€). A more accurate, steepest-descent approximation would include the £-dependence in
both. However, since the dependence in the A term dominates the behavior of the integral,
we ignore the dependence in the D term in determining the local maximum. We find

! !
Ag Oy + Oy,

Eopt
op ah? + al
vt % + Epiat!
Qp = Lo ———————
2 t+&
a; _ fp$21
v+&

and similarly for a, and a;. The approximate result for the integral is then
IR(t,) ~ FR(gol)t)RpPl(Q | 1; tla fopt)

Fp(§) =/2m2TD/(a}? + a)?), 0<{<t

When £ < 0 or £ > t' then we set Fgr = 0. Of course, I is never actually zero. If its behavior
for &pr < 0 or &, > t' is important, we must simply approximate more carefully.

We now face [y dtP(2 | 1;t) where t,,4, is so large that P(2 | 1;¢) for ¢ > t is
comparatively negligible. There are two integrals with different local optima (i.e., ¢, and
topt)- The first integral (which lacks the single large scattering event) is

tmaa:
Io :/0 dt Py(2 | 1;1)/(1 + Ryt)
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Here the dependence on t in the argument of the exponentials is:

—6(ga/t — gy/t> + gc/3t%) — 41nt

9o = (Ui + U; + (~T§1 + ygl)/12)72T
G = 2(x20vp + yarvy) /YT
ge = 3(3531 + ygl)/’)’QT

This argument has a local maximum at ¢,,: > 0, where ?,,; satisfies
—2t + 3(gat> — 25t + gc) = 0
yielding the approximate value for I of

\/27rt0pt 12(ge — Gstopt) + 413,)
If more than one real ¢,,; > 0 exists, the one yielding the largest (2 | 1) is chosen. Generally,
one must take all roots, real and complex, into account. However, for this problem, we found
that choosing the largest real root sufficed. The second integral (which includes the single
large scattering event) is

tmam
I = / ' In(t)/(1 + Ryt

t1

If this term is to be important then &, = (02/T) >> t', in which case the argument of the
exponent in I; will be maximum for ¢’ close to

_ T21Y21 — Y21T21

t =
Pt T1Y2 — Lo
so that
5L = Fl(topt)]R(topt)/(l +R topt)
Fy(t) = 2092 TD (i3 + 331)/ (d152 — o)’
for 0 <, < tmae, and Fy =0 for t, <0 or t,,; > tme- As before, F} is never really zero.

If 0 < topt < tmag and topt <0ort) ot > tmazs then Iy >> I, and [; can be ignored. However,
if both ¢, and topt are greater than tmaz, then .. is too small and should be increased.
Appendix C: Constant Speed Case

In this Appendix, we give expressions for the special case of contours which have the same

initial and final speed. Our intention is to approximate the distribution of contours described
by Mumford[4] and Williams and Jacobs[6]. This is the distribution of trajectories in the
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plane traced by particles travelling with constant speed in directions given by Brownian
motions. For equal initial and final speeds, the convolution with broadening functions (em-
ployed as an anti-aliasing measure) is over position and direction, not position and velocity.
Consequently, the Jacobian (i.e., the ratio of sampling volumes in the scaled and unscaled
systems) is 42 (not v*):

P($2,y2,92 | $1,Z/1,91) =

v / d:r/ dy/ df' E(z',v*03) E(y',v°0y;) E(0',05) p(xa—=',ya—y', 02— 0" | 21,91, 61)

where E(r',v%02) = exp[—(r' ?/2720?)]/\/2my202. This leads to the following scale-invariant
expressions for Py(2 | 1;¢) and Py(2 ] 1; ¢,£):

exp[—(6/7*Tt?) (w21 — v,t)%(1 — (1 + Tt3/1202)71)] .

hln = V27 (02 + T13/12)
exp[—(6/72Tt%) (ya1 — vyt)*(1 — (1 + Tt3/1205)’1)] .
\/2m(02 + Tt3/12)
expl= (/2T +iB)0 = 0+ Teod) )]
2m(of + Tt)
e ne - SEUA/RTDII— (LT ™)

2m(02 +TD)
exp[—(A;/2y*TD)(1 - (1+TD/o2)™")] .
2n(02 +1TD)
exp[—(1/2y*TH) (@3, +§3,)(1 = (1 + TH/oj) )]
2r(oj +TH)

-exp(—t/7)

where 21 = ycosfy,To = ycosby,y; = ysin#, and g, = ysinfy. As before, the Jacobian
factor is cancelled by equal factors in the denominators of the above expressions. Finally, we
note that for the constant speed case, there is a small change in the integral approximations
described in Appendix B. The optimum time, ¢,,, in the steepest descent approximation of
Iy now solves:

7
—Zt?‘ + 3(gat® — 295t + gc) = 0

The integral approximations are otherwise unchanged.
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