
  

FormWriter 
A Little Programming Language for Generating Three-
Dimensional Form Algorithmically 

Mark D. Gross 
Design Machine Group, Department of Architecture, University of Washington 

Key words: Programming Language, Geometry, Form Generation 

Abstract: FormWriter is a simple and powerful programming language for generating 
three-dimensional geometry, intended for architectural designers with little 
programming experience to be able to generate three dimensional forms 
algorithmically without writing complex code.  FormWriter’s main features 
include a unified coding and graphics environment providing immediate 
feedback and a “flying turtle” - a means of generating three dimensional data 
through differential geometry. 

1. ALGORITHMIC FORM GENERATION 

1.1 Introduction 

Powerful three-dimensional modelling software has made it easy for 
architects to shape and sculpt three dimensional material and space using 
direct manipulation operations. Architects find that computer aided design 
modellers can help them generate radically new forms for buildings. Gehry’s 
forms in the Guggenheim museum in Bilbao and at the Experience Music 
Project in Seattle, Greg Lynn’s proposals for blob architecture (Lynn, 1998); 
Reiser+Umemoto’s IFCCA Competition for the Design of Cities project in 
New York (Benjamin and Libeskind, 1998)—all show radical departures 
from conventional forms enabled by computer aided design software. 
(Kolarevic, 2000) provides an overview of these developments, some of 
which are mentioned in (Perrella, 1998; Toy, 1999). 

With these novel forms has come a renewed interest in generating form 
algorithmically, that is, writing computer programs whose execution results 
in three dimensional geometry, and using this computational medium to 



578 CAAD Futures 2001
 
explore architectural form. Generative systems are a well-established theme 
in computer-aided architectural design, including the approaches of shape 
grammar, genetic algorithms, and parametric variation. However, 
algorithmic form generation has largely remained the province of academic 
investigation, perhaps because of the level of technical expertise it has 
required. 

Visual arts and music have a long history of exploring algorithmic form 
generation. Computer music, from the early days of Illiac, has been largely 
engaged in the development and deployment of sound producing algorithms.  
Similarly algorithmic generation of images has been a central theme in 
visual art.  Although algorithmic form generation has certainly had a 
presence in computer-aided architectural design, it is fair to say that other 
interests have taken a more prominent position.  

Investigating new forms for buildings, freed from the constraints of 
conventional building materials and techniques, architects are beginning to 
explore how algorithms can be used to generate complex three-dimensional 
curves, arrangements, and folding of space and material.  Algorithmic 
generation can produce significantly different and more complex forms than 
conventional CAD.  

Despite the power of industrial strength 3D modellers such as CATIA 
and Maya, many things are difficult to accomplish, and some just can’t be 
done.  It remains difficult to use most CAD modellers (Revit 
notwithstanding) to generate three dimensional forms through 
parameterisations and more sophisticated algorithms. Algorithmic form 
generation is familiar in the engineering design disciplines: civil and 
aeronautical engineering and naval architecture, where three dimensional 
shapes are more strictly dictated by functional requirements expressed as 
mathematical equations.  

If one wants to generate three dimensional forms algorithmically, one 
must decide between two main alternatives: On the one hand macro facilities 
and scripting languages within CAD modellers are relatively easy to learn, 
but they inherently limit the programs one can write (and hence the forms 
one can generate).  On the other hand, full-fledged programming languages 
such as C and Java are powerful but they require more effort to learn, and 
generating 3D geometry also requires attention to many language features 
that have no direct bearing on form. 

1.2 Support for algorithmic form generation 

Table 1 distinguishes five levels of support for algorithmic form 
generation provided by CAD modellers. The simplest modellers provide no 
support whatsoever for algorithmic generation: models must be constructed 
directly using the geometric primitives and operations provided on the CAD 
modeller’s menus. Most CAD modelling programs offer macro facilities or 



FormWriter 579
 
Table 1. Five levels of support for algorithimic generation 
1 None the designer may use only the geometric 

primitives and operations built in to the 
modeller.   
 

2 Macros frequently used sequences of operations can be 
recorded and replayed, in some cases allowing 
parameters to be supplied at replay time.   
 

3 Scripting languages more control over the modeller than recorded 
macros but which fall short of a full-fledged 
programming language.   
 

4 Embedded programming 
language  
 

e.g., AutoCAD’s AutoLisp or ArchiCAD’s 
GDL.  Access to the modeller’s library via a 
language within the modeller. 
 

5 External 
programming language 

programs typically written in C or Java 
communicate with and control the modeller. 
Bentley Microsystem/J  
 

 
scripting languages. Although a macro facility serves simple tasks well 

(such as repetitive window patterns or stairs), it is difficult to program more 
complex operations using only macros.  Scripting languages, which have 
gained wide acceptance in other domains (witness JavaScript and Flash), 
provide considerably more power than macros but coding more sophisticated 
tasks becomes quite complex, requiring a specialist programmer. An 
embedded programming language, like a scripting language, enables the 
programmer to control and command the modeller from an environment 
within the CAD program, and allows more powerful constructs than the 
typical scripting language. Many CAD programs now include an embedded 
language, and advanced users of these CAD programs enthusiastically 
endorsetheir modeler’s scripting or embedded language. AutoLisp is 
arguably the best known example. Although the underlying Lisp language is 
extremely elegant and powerful, Autodesk’s implementation was a weak one 
and the programming environment for developing AutoLisp routines is 
woefully inadequate by modern standards.  Another example of an 
embedded programming language is ArchiCAD’s GDL, which provides 
access to the modeller’s functionality through a BASIC-like language.  
Although it provides this functionality, the choice of a BASIC programming 
style limits the language and renders it inelegant: Language design makes an 
enormous difference.  GDL does enable the construction of parametric 
objects. A fully fledged programming language such as C or Java can be 
used to write complex form-generating algorithms but it requires more 
expertise than most designers are willing to commit to acquiring.  For a 



580 CAAD Futures 2001
 
recent example in visual art see (Berzowska, 1998); an architectural example 
is Terzides’s Java based experiments in morphing (Terzidis, 1999). 

Some designers have resorted to using software such as Mathematica or 
MathCAD to generate three-dimensional surfaces. Mathematical software is 
good at describing three dimensional surfaces by parameterised functions, 
but provides limited support (at best) for the basic features that make 
programming a powerful medium of expression: for example, conditional 
expressions, iteration, data structures such as sequences and strings.  What 
designers need is a simple way to explore and generate forms 
algorithmically, without the complexities of a professional programming 
language. 

1.3 FormWriter 

FormWriter is an easy-to-use programming language designed especially 
to allow architects and architecture students to explore algorithmic form 
generation. The idea of FormWriter is to eliminate complexity without 
sacrificing the power of programming. FormWriter offers a simple syntax, a 
unified development environment, and easy access to three-dimensional 
libraries.   

The FormWriter program described below follows in a tradition of 
novice and domain-oriented programming languages (du Boulay, 1981; 
Bentley, 1986; Tweed, 1986). The time may now be ripe for a new, 
architectural, generation of these ‘little languages’. Powerful 3D graphics are 
now available on the desktop and architects and students are better prepared 
to write code.  Like John Maeda’s “Design By Numbers” little language for 
graphic desingers, (Maeda, 1999) the design of FormWriter derives from 
experience with an earlier generation of novice programming languages at 
the MIT Logo Project (Papert, 1980).  

With only a few lines of code a designer can generate three dimensional 
graphics immediately, and within minutes can explore parameterised and 
conditional construction to generate complex combinations of forms.  The 
graphics environment is integrated with the code editor and programming 
environment, allowing a designer to explore forms fluidly without the 
distractions of a code-compile-load-execute cycle.  

FormWriter is a domain-specific language for novice programmers; 
nevertheless it a full-fledged language with constructs for passing arguments 
and returning values, conditional execution, iteration and recursion.  

2. FORMWRITER 

Figure 1 shows the FormWriter working environment: at left a window 
into a 3D space with browsing controls; at right an editor window for writing 



FormWriter 581
 
code. FormWriter also shows the list of user defined procedures as well as 
the system built-in primitives. 

 

Figure 1. The FormWriter Design Environment 

The designer types code in the editor window; to see the result the 
designer presses the “execute” button.  The resulting geometry can be saved 
as a file and imported into a CAD modeller for further processing.  
Procedures written in the FormWriter environment can also be saved and 
reloaded in a future session. 

2.1 Simple FormWriter commands 

The first thing to do with FormWriter is to generate 3D forms by writing 
code directly, without defining any procedures.  Figure 2 shows the result of 
a few minutes of play with FormWriter along with the lines of code that 
generated it.  FormWriter’s primitive procedures to generate geometry 
(triangle, cone, box, sphere, cylinder) take dimensions as parameters; the 
forms are positioned by moving the 3D “flying turtle” forward between the 
primitive geometry generating procedure calls.  

 



582 CAAD Futures 2001
 

 
 

Figure 2. Generating simple forms directly. 
 
Figure 3 shows how the 3D (flying) turtle is used to position and orient 

five cylinders.  The flying turtle can move forward and back, and turn (right 
and left), pitch (up and down), and roll (side to side).  FormWriter inserts 
each geometric primitive at the current position and orientation of the flying 
turtle, so as the turtle moves forward (.2 units) and pitches up (30 degrees), 
between calls to the “cylinder” primitive procedure, each cylinder is 
translated and rotated in space. 

 

Figure 3. Positioning cylinders in space using the 3D turtle (pitch and forward).  

 



FormWriter 583
 
2.2 A first FormWriter procedure 

After exploring some simple primitives, and becoming familiar with the 
flying turtle as a means to position forms in space, the next thing to do is 
write FormWriter procedures. FormWriter employs the same editor wiindow 
for defining procedures as for executing commands directly.  Each of the 
forms in Figure 4(a-d) were produced by iterativse calls to the user-defined 
one_box procedure, executing the following line: 

 
repeat (i,10) [ one_box() ]  
 

Each of the forms used a slightly different definition for the one_box 
procedure as shown in Table 2 below - adding first a turn, then a roll, and 
finally a pitch instruction to the flying turtle to produce the row of boxes 
(4a), the turning row(4b), the twisting turning row(4c), and the helix in 
figure 4(d).  The repeat statement iterates over a program statement (the call 
to one_box) binding a variable (in this case i) to the iteration count. 

 

        

Figure 4. (a) A row of boxes; (b) turning boxes; (c) twisting boxes; (d) boxes helix  

 

Table 2. one_box code for the forms in Figure 4 
 

to one_box() 
box(.4,.1,.2) 
forward (.2) 

end 
 

to one_box() 
box(.4,.1,.2) 
forward (.2) 
right(10) 

end 
 

to one_box() 
box(.4,.1,.2) 
forward (.2) 
right(10) 
roll(10) 

end 
 

to one_box() 
box(.4,.1,.2) 
forward (.2) 
right(20) 
roll(20) 
pitch(20) 

end 

 



584 CAAD Futures 2001
 

       

Figure 5. Triangle variations: Orchid, Spiny Tree, and Cathedral 

Figure 5 shows some variations produced by a similar program, this time 
drawing a triangle and written with an input parameter - the code appears in 
Table 3.  TRI is a simple procedure that sets the display color (red, green, 
and blue values scaled from 0-1) and traces a triangle polygon from the 
current position and orientation of the flying turtle.  The dimensions of the 
triangle depend on the parameter N that is passed to the TRI procedure.  
TRIMANY is a recursive procedures that takes one parameter N, calls TRI 
with that value (resulting in varying size triangles), and then moves forward 
a distance depending on N, then rolls, pitches, before calling itself 
recursively, decrementing N until N goes to zero.  Slight variations on this 
code produced the illustrations in Figure 5. 

Table 3. Recursive parametric code for generating triangle forms 
 
TO TRIMANY (N) 
 TRI(N) 
 FORWARD((N/ 20)  ) 
 ROLL(20) 
 PITCH(10) 
 if (N> 0)   then TRIMANY((N- 1)  )  
end 
 

 
TO TRI (N) 
COLOR (.6,.1,.7) 
 TRIANGLE(0, 0, N, N, 0, 0) 
 COLOR(.1,.7,.3) 
 TRIANGLE(0, N, N, N, 0, 0) 
end 

3. LANGUAGE DESIGN  

FormWriter avoids the complexities of languages such as C and Java 
while providing the full computational power of a  functional programming 
language.  Three key features of FormWriter make it powerful and easy to 
use. These are:  
1. immediate results, reducing the four-step edit, compile, load, and execute 

cycle to a 2-step edit and run cycle;  
2. variables are not typed; that is, programmers need not declare variables 

as integer, string, etc. 



FormWriter 585
 
3. three dimensional space is described differentially, hiding from the 

programmer the complexities of transformation matrices and coordinate 
systems.   

The language provides a full complement of control structures: iteration 
(repeat) and conditional execution (if-then-else) as well as recursion; and 
data types, including numbers, sysmbols, sequences (lists).   

3.1 Immediate results 

FormWriter provides immediate results: The programmer writes and runs 
the code in the same environment.  Most compiled programming languages 
such as C and Java require a four step cycle: (1) edit source code; (2) 
compile source code; (3) load compiled (object) code; (4) execute the 
program. (Many integrated development environments enable these four 
steps to take place in a single environment, but these environments are 
typically quite complex, providing more advanced programming and 
debugging tools than a novice is prepared to deal with..) One of the earliest 
novice programming languages, BASIC (Beginner’s All-purpose Symbolic 
Instruction Code), replaced this four step process with a two step integrated 
edit and execute cycle. BASIC ran as an interpreted language and 
programmers could write, run, and debug code in a single environment.  
When the BASIC interpreter detected an error, or when the program did not 
behave as expected, the programmer could simply retype the offending lines 
and RUN the program again.   

3.2 Untyped variables  

The second key feature of FormWriter is that variables are not typed and 
need not be declared.  In C and Java, every variable must be declared as 
belonging to a specific type (integer, string, array) before it is used in a 
program. Some other powerful programming languages—Lisp, for 
example—do not impose type restrictions. Strongly typed languages are 
generally thought to help programmers write correct code, because this 
discipline reveals errors at compile time that might otherwise result in 
obscure run-time behaviour. For a novice programmer, however, the 
discipline of declaring variable types before using them imposes an 
additional distance from writing and debugging code. 

3.3 Differential (turtle) geometry 

The third key feature is that FormWriter programmers use differential 
geometry—the flying turtle—to perform translations and rotations of scene 
geometries.  This simplifies considerably the deployment of three-



586 CAAD Futures 2001
 
dimensional forms, because the programmer need not keep track of a 
coordinate system or understand the transformation matrices that most 3D 
programming libraries offer.  Differential geometry for computer graphics 
was introduced in the novice programming language Logo: It is one of that 
language’s “powerful ideas” and opens the door to interesting experiments in 
mathematics and graphics  (Abelson and diSessa, 1981). The following 
program  to draw a circle reveals the power and simplicity of this approach: 

 
to circle  
 repeat [forward 1  r ight 1] 
end 
 

The turtle traces out a circle by repeatedly moving one step forward and 
turning one degree to the right.  By adopting a local frame of reference the 
programmer needs no recourse to coordinates, trigonometry, or the 
(cartestian or polar) equation of a circle: only a common-sense experiential 
knowledge of space.   

3.4 Syntax 

The careful reader will have noticed some variation in the syntax used in 
the examples in this paper.  We are exploring three alternative syntaxes for 
FormWriter: a C-like syntax with infix operators, a Lisp syntax, and a Logo-
like syntax.  Each has its advantages and disadvantages.  We currently 
support all three syntax variations.  User programs are first translated into 
Lisp and then executed by the Macintosh Common Lisp environment.   

The C-like syntax will be familiar to anyone who has had contact with a 
conventional programming language like C or Java.  The Lisp syntax has the 
simplest syntax rules.  The Logo syntax is easiest to write for simple 
programs, but imposes some constraints on functional composition.  Table 4 
below shows equivalent statements in the three syntax variants. 

 
Table 4. Syntax alternatives for FormWriter 
Logo-style C-style Lisp-style 
red 1 red (1) (red 1) 
to spiral :dist :angle :geom 
 pitch :angle 
 roll :angle 
 right :angle 
 forward :dist 
 eval :geometry 
 spiral :dist :angle :geom 
end 

to spiral(dist, angle, geom) 
 pitch(angle) 
 roll(angle) 
 right(angle)  
 forward(dist) 
 eval (geometry) 
 spiral(dist, angle,geom) 
end 

(to spiral (dist, angle, geom) 
 (pitch angle) 
 (roll angle) 
 (right angle) 
 (forward dist) 
 (eval geometry) 
 (spiral dist angle geom) 
end) 

 



FormWriter 587
 
4. DISCUSSION 

A debate has endured for many years as to whether schools teaching 
computer aided design should teach computer programming.  Opponents of 
teaching programming argue that architects need to learn to use CAD tools 
effectively in design, and that building software is best left to professional 
programmers.  Proponents of teaching programming argue that it is essential 
to understand how computers do what they do and to ‘open the black box’ of 
computation even for people who will not become professional 
programmers.  

Perhaps the debate is academic.  Recently, a surprising number of 
architecture students—novice programmers par excellence— have embraced 
the coding details of HTML, JavaScript, Lingo, Flash.  They want to 
produce the effects that they can obtain with these languages and to produce 
these effects they are willing to put up with an amazing amount of 
complexity. 

4.1 Implementation status 

The first version of FormWriter is written in Macintosh Common Lisp 
and uses the QuickDraw3D API to display three-dimensional geometry.  The 
current development version is replacing QuickDraw3D by OpenGL.  We 
are prototyping version of FormWriter written in Java that runs in a browser, 
producing VRML code that is displayed using a VRML plug-in or Java3D.   

5. ACKNOWLEDGEMENTS 

The current version FormWriter is written in Macintosh Common Lisp 
(MCL) and employs “user contributed code” written by Mark Kantrowitz 
(infix parsing), and John Wiseman (QuickDraw3D). The OpenGL version 
currently under development employs the OpenGL API written by Alex 
Repenning of Agentsheets Inc. The Java applet version is being written by 
Thomas Jung. 

6. REFERENCES 

Abelson, H. and A. diSessa, 1981, Turtle Geometry, MIT Press, Cambridge, MA. 
Benjamin, A. and D. Libeskind, 1998, Reiser + Umemoto : Recent Projects, John Wiley & 

Son Ltd, London. 
Bentley, J. L., 1986, “ Little Languages -- Programming Pearls.” Communications of the 

ACM. 29(August), p.  711-721. 



588 CAAD Futures 2001
 
Berzowska, J., 1998, Algorithmic Expressionism. Media Laboratory, Cambridge, MA, MIT. 
du Boulay, J. B. H., O'Shea, T., and Monk, J., 1981, “The black box inside the glass box. 

Presenting computing concepts to novices.” International Journal on Man-Machine 
Studies 14(3), p. 237-249. 

Kolarevic, B., 2000, "Digital Architectures", In Proc. ACADIA 2000, ACADIA, Washington, 
DC (forthcoming). 

Lynn, G., 1998, Animate Form, Princeton University Press, Princeton, NJ. 
Maeda, J., 1999, Design By Numbers, MIT Press, Cambridge, MA. 
Papert, S., 1980, Mindstorms, children, computers and powerful ideas, Basic Books, New 

York. 
Perrella, S., ed. 1998, Hypersurface Architecture (Architectural Design Profiles,133), John 

Wiley & Son Ltd;, London. 
Terzidis, K., 1999, "Experiments on Morphing Systems", In III Congreso Iberoamericano de 

Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay), SIGRADI, p. 
149-151. 

Toy, M., ed. 1999, Architects in Cyberspace II (Architectural Design Profile, No 136), John 
Wiley & Son Ltd, London. 

Tweed, C., 1986, "A Computing Environment for CAAD Education", In Teaching and 
Research Experience with CAAD [4th eCAADe Conference Proceedings], eCAADe, p. 
136-145. 


