[—

CS 257: Non-Imperative Programming: Scheme!
Homework 3 (Spring ' 06)

Exercises 4.18, 4.19, 4.20 from Springer and Friedman.

Write a functiondeep-max, which takes an s-expressi@expr, as its argument and returns
the maximum of all of the numbers in the s-expression. Fomgte, (deep-max ' (1 2 a ((3)

b 4))) should return 4 anddeep-max '(a . 2)) should return 2. You may assume that all
numbers are positive, therefaigeep-max ’(a b ¢)) should return 0.

Write a functionatom-depth, which takes a listls, as its argument and returns a list where
every atom is replaced by its depth in the list. Here, deptlefgied to be the number of left
and right parentheses which enclose the atom. For exarfgbbeydepth '(a b c)) returns
(111), (atom-depth ’(a (b) ¢)) returns(1 (2) 1) and (atom-depth ’(((foo)))) returns(((3))).
Hint: Use a helper function with an extra parameter.

Write a function,equal?, which has the same behavior as the Scheme function with that
name.

Write a tail-recursive functiomven-iota, which takes an integeras its argument and returns
an ordered list of the even integers (in ascending ordegtgreéhan or equal to zero and less
than or equal ta.

. Write a tail-recursive functiorsin, which takes a numbek, as its argument and returns

sin(x). Your function should approximate gi) by summing the first 100 terms of the
following Taylor series:

oooxh 3 e XX
Any helper functions you need should be defined within theyladdsin usingletrec. Note:
There is a good way and a bad way to do this. The good way avordputing the factorial
which appears in the denominator of each term in the sees $cratch each time.

