
CS 257: Non-Imperative Programming:
Scheme!

Homework 4 (Spring ’05)

1. Write a function, cond->if, which takes a cond expression, and trans-
forms it into a set of nested if expressions. For example,

> (cond->if ’(cond ((> x y) (- x y)) ((< x y) (- y x)) (else 0)))

(if (> x y) (- x y) (if (< x y) (- y x) 0))

>

2. Get the code for polynomial arithmetic from the class homepage. Re-
write the function, p*, which multiplies two polynomials, so that it
is completely tail-recursive. Hint: This should be done in two parts.
First, re-write the subroutine, t*, which multiplies a polynomial by a
term so that it is tail-recursive. After you have tested p* and verified
that it works correctly with the tail-recursive t*, then re-write p* itself,
so that the entire function is tail-recursive. You will need to add tail-
recursive subroutines to the letrec (e.g., t*-it and p*-it) to do this.

3. Get the code for symbolic differentiation from the class homepage. Ex-
tend the deriv function so that it differentiates expressions of the form,
u−v. The relevant differentiation rule is d(u−v)/dx = du/dx−dv/dx.
In order to do this, you will need to add a new constructor function,
make-diff, which takes expressions, u and v as arguments, and returns
the expression for u − v. You will need to add two new selector func-
tions, minuend, and subtrahend, which, when given an expression of
the form, u − v, return u and v respectively.

4. Extend the deriv function so that it differentiates expressions of the
form, un, where u is an arbitrary expression and n is a constant or
number. The relevant differentiation rule is dun/dx = nun−1du/dx.
In order to do this, you will need to add a new constructor function,
make-expt, which takes an expression, u, and a constant or number,
n, as arguments and returns the expression for un. You should use
expt to represent the exponentiation operator. You will also need to
add two new selector functions, base, and power, which, when given an
expression of the form, un, return u and n respectively.



5. The function list? takes an s-expression, s, as an argument and returns
#t if s is a list and #f otherwise. Give a definition of the function,
list-all?, which takes an s-expression, s, as an argument and returns
#t if s is a list and all pairs in s are also lists. Otherwise, list-all?
returns #f. For example, (list-all? ’(1 ((2 3)) (4))) should return #t
and (list-all? ’(1 ((2 . 3)) (4))) should return #f. You may use list?
to define list-all?.


