
CS 257: Non-Imperative Programming: Scheme!
Homework 6 (Spring ’05)

1. Exercises 7.12, 7.13, 7.18, 7.22, 7.26, 7.30, 7.31

2. The higher-order function,tail-recur, takes the following arguments:

• bpred - a procedure ofx which returns #t if the terminating condition is satisfied and #f
otherwise.

• xproc - a procedure ofx which updatesx.

• aproc - a procedure ofx andacc which updatesacc.

• acc0 - an initial value foracc.

and returns a tail recursive function ofx. For example, it can be used to write the function,
factorial as follows:

(define factorial
(tail-recur zero? (lambda (x) (- x 1)) * 1))

Write tail-recur.

3. Usetail-recur to write reverse.

4. Usetail-recur to write iota.

5. The functionany? takes a predicate,pred, as its first argument and applies it to the elements
of its second argument, a list,ls. If any elements ofls satisfy the predicate,any?, returns #t
otherwiseany? returns #f. Usetail-recur to write a function,any?-c, which takes a predicate,
pred, as its argument and returns a function of a list,ls. Useany?-c to defineany?.

6. Define a functionclock-maker which creates instances of a class,clock, representing a 12
hour clock, using threerestricted-counter objects (See Exercise 12.4 in Springer and Fried-
man) to represent hours, minutes, and seconds. Clock instances should recognize the fol-
lowing methods:

• type - Returns’clock.

• tic! - Advances the time by one second.

• seconds! - Set the second hand to the value of the first optional argument. Displays an
error message if the argument is less than 0 or greater than 59.

• minutes!- Set the minute hand to the value of the first optional argument. Displays an
error message if the argument is less than 0 or greater than 59.

• hours! - Set the hour hand to the value of the first optional argument.Displays an error
message if the argument is less than 0 or greater than 11.

1



• display - Displays the current time in a HH:MM:SS format.

You can test your clock class using the following test routine:

(define clock-tester
(lambda ()

(let ((clock (clock-maker)))
(letrec
((loop

(lambda (seconds)
(if (< seconds 3601)

(begin
(send clock ’tic!)
(loop (add1 seconds)))))))

(send clock ’hours! 11)
(send clock ’minutes! 3)
(send clock ’seconds! 47)
(loop 0)
(send clock ’display)))))

If your clock is working correctly, it should display 00:03:48.

2


