
CS 257: Non-Imperative Programming: Scheme!
Homework 6 (Spring ’07)

1. Exercises 7.12, 7.13, 7.18, 7.22, 7.26, 7.30, 7.31

2. The higher-order function, tail-recur, takes the following arguments:

• bpred - a procedure of x which returns #t if the terminating condition is satisfied and #f
otherwise.

• xproc - a procedure of x which updates x.

• aproc - a procedure of x and acc which updates acc.

• acc0 - an initial value for acc.

and returns a tail recursive function of x. For example, it can be used to write the function,
factorial as follows:

(define factorial
(tail-recur zero? (lambda (x) (- x 1)) * 1))

Write tail-recur.

3. Use tail-recur to write reverse.

4. Use tail-recur to write iota.

5. The function ormap takes a predicate, pred, as its first argument and applies it to the elements
of its second argument, a list, ls. If any elements of ls satisfy the predicate, ormap, returns
#t otherwise ormap returns #f. Use tail-recur to write a function, ormap-c, which takes a
predicate, pred, as its argument and returns a function of a list, ls. Use ormap-c to define
ormap.

6. Define a function clock-maker which creates instances of a class, clock, representing a 12
hour clock, using three restricted-counter objects (See Exercise 12.4 in Springer and Fried-
man) to represent hours, minutes, and seconds. Clock instances should recognize the fol-
lowing methods:

• type - Returns ’clock.

• tic! - Advances the time by one second.

• seconds! - Set the second hand to the value of the first optional argument. Displays an
error message if the argument is less than 0 or greater than 59.

• minutes!- Set the minute hand to the value of the first optional argument. Displays an
error message if the argument is less than 0 or greater than 59.

1



• hours! - Set the hour hand to the value of the first optional argument. Displays an error
message if the argument is less than 0 or greater than 11.

• display - Displays the current time in a HH:MM:SS format.

You can test your clock class using the following test routine:

(define clock-tester
(lambda ()

(let ((clock (clock-maker)))
(letrec

((loop
(lambda (seconds)
(if (< seconds 3601)

(begin
(send clock ’tic!)
(loop (add1 seconds)))))))

(send clock ’hours! 11)
(send clock ’minutes! 3)
(send clock ’seconds! 47)
(loop 0)
(send clock ’display)))))

If your clock is working correctly, it should display 00:03:48.

2


