Simple Logo (“Slogo”) Design

CS32 Assignment 1 (8% of Final Grade)

I mportant Dates:

Assignment Out: Thurs. Jan 23, 2003.
Partner Chosen: Tues. Jan 28, 2003.
Rational Rose Help Session: Weds. Jan 29, 2003 in CIT165.
Logo Design Due: Mon. Feb 3, 2003 at NOON! (in handin bin)
Logo Design Workshop: Tues. Feb 4, 2003 in class.
Welcome!

Congratulations on “choosing” CS32! Now it’stimeto hit the ground running with an
assignment which should reinforce two central principles for this year: teamwork and design.
You'll work with one other person, and hand in a single document (with both your names clearly
marked). The assignment will be done using the Unified Modeling Language (UML) astaught in
class and reinforced during a help-session on Rational Rose this Wednesday, January 29th in
CIT165.

You need not inform us of your partner choice before handing in, but if you have not found
apartner before the next class period, please contact the TAsimmediately. You may not work on
thisassignment alone. A CS32 conventions document has been handed out in classand is
available on the course webpage which details the specific UML conventions you will be held to.
Also, it is recommended that you attend the Rational Rose Help Session, on Wed., Jan. 29th
from 7-9pm in CIT 165. At the help session your TAswill cover the ins and outs of Rational
Rose and be avaliable to answer any questions about the Logo assignment.

Goals

* Object Oriented Design

* Introduction to the Unified Modeling Language

» Teamwork!

Your task

For thisassignment, you and your partner will design (not implement) asimplified version
of aprogramming language called Logo. Your design will not be dependent on a particular
language, although a potential implementation language would clearly be object oriented. The
handin will consist of afew pages of UML class descriptions, “use cases’ and a sequence
diagram.

The completed assignments will be the source for aLogo Critique workshop which will
take placein class on Feb. 4th. Please be aware that your work may be displayed and analyzed,
for both strengths and weaknesses, in front of the entire class. This process will be kept as
confidential and anonymous as possible, and to assist usin this you must make your handins neat
and clear. You may use Rational Rose or simply pen and paper, but please avoid lined or ruled
paper which may not transfer to transparency easily.

Slogo 1

Background

Remember that specia day in third grade when three Apple |1 computers appeared in the
back of the classroom, all running Logo? Logo, like BASIC, was intended as an educational
language, and, like BASIC, is probably responsible for ruining several million potential
programmers with its open encouragement of global variables and absurdly long spaghetti-coded
subroutines. Y ou're older now, and have put aside childish programming techniques; the Good
Word of Design has filled you from head to toe. But part of you misses the child-like joy of
coding in al capital letters and referring to atriangle as a “turtle.”

Logo isacomputer programming language originally created at the MIT Avrtificia
Intelligence Lab in the 1970s for use by learners. This user-friendly, interpreted language based
on L1SP was designed with the “low floor, high ceiling” principlein mind; that is, the designers of
Logo intended for the language to alow novice programmers to get started quickly with writing
programs but also wanted the language to be powerful and extensive for more advanced users.

In the early days, Logo was used to control asimple robot, called aturtle. Users could
issue commands such as FORWARD 50 to make the turtle advance 50 steps, or Rl GHT 90 to
make it turn ninety degrees. The turtle robot carried a pen, so users could produce drawings on
paper by controlling the turtle and its pen. The turtle, which has since migrated to the screen, has
become one of the most familiar and important parts of the Logo language. Children who were
using the computer for the first time could relate to “talking to the turtle” and could imagine how
the turtle moved by “playing turtle,” moving their bodies as the turtle would. The turtle also
makes learning basic programming concepts easier and more engaging because it provides
immedi ate feedback.

Asadialect of LISP, Logo isacomplex and powerful language. For this project you will
design amuch ssimplified version of Logo. Simple Logo should retain the features most
commonly used by beginning users.

For moreinformation, check out: http://el.www.media.mit.edu/groups/logo-foundation/ or
the logo implementations in /course/cs032/demos/logo. (Please note: Our implementations, both
Linux and Solaris versions, may not be perfect nor should be used as a reference!)

Functionality

Simple Logo provides functionality in the following areas:

» User interface: When the Simple Logo user launches the interpreter from the com-
mand line, it should bring up a turtle shell and a turtle graphics window. The inter-
preter will need to receive, parse, and execute commands from the user, reporting
any errors it encounters along the way.

» Basic turtle graphics: Simple Logo users should be able to control the turtle by
moving it forwards, backwards, changing its heading, and showing/hiding the tur-
tle. Drawing capabilities should be provided by pen manipulation. The user
should also be able to make turtle motion and pen queries.

» Workspace management: Users should be able to define and use subroutines.
Users should also be able to define and use global variables.

* Control structures: loops and conditionals.

* Error handling: Simple Logo should gracefully handle any errors that may occur
while parsing and interpreting user-given commands. This includes providing
appropriate error messages, via the graphical user interface (GUI.)

Refer to the table of commandsin Appendix A and the grammar in Appendix B for a
complete explanation of the built in commands.

Slogo 2

How to think about the project

Simple Logo can be broken down into two main components: the Parser, responsible for
command parsing, interpretation, and environment maintenance, and the Turtle Graphics Library
(TGL), in charge of al the graphics and user interaction, as well asthe turtle itself. Parsing
involves processing commands token by token and verifying syntax, whereas interpretation is the
actual execution of code as understood by the parser. It isthis execution which will require
graphical manipulation and therefore interaction with the TGL.

A good Logo design will appropriately split functionality into compact, easily understand
pieces, which could be independently changed or upgraded thanks to well-defined interfaces.
Remember, there is no single perfect design, but certain designs (such as one with a single huge
class) are clearly inferior to others. Meet with your partner early, and plan the project in stages.

Parsing

The parser will receive a block of input (not necessarily asingle line), and be expected to
store and evaluteit. This should seem very familiar from CS31’s Compiler and heavily rely on
concepts from object oriented programming which you know well by now. Polymorphism, for
example, islikely to be aclose aly in helping you transform the Simple Logo grammar
(Appendix B) into a set of inheritance relationships.

Graphics

For this project you do not have to learn and understand an actual graphics package, nor
base your GUI implementation on any existing graphicslibraries. On the next page we have
provided alimited API (Application Programmers Interface) specification establishing which
classes and what methods you might find useful for writing the graphical sections of the Simple
Logo design.

Teamwork

We recommend you work individually on atop-level design before meeting as a group to
design the complete solution. Theideais not to discourage working as ateam, but rather to
promote individual thought and creativity aswell. Undoubtedly most of your time will be spent
together, and we expect aroughly equal contribution from each student both in thought and
authorship.

Design Workshop

The purpose of the Logo critique in class on Tues. Feb 4th is to emphasize perhaps the
most important process in design: redesign. Through examples picked from your handins, you
will be exposed to various approaches to the problem, limited only by the creativity of your work.
Again, this process isto be as anonymous as possible, since our intent is neither to embarass nor
reward specific teams, but rather to provide constructive feedback in atimely manner. However,
we can only hope this process will aso encourage you to produce work you are proud of.

Slogo 3

Requirements

All groups must hand in the following:

Class relationships

One UML diagram of the major classes, in which the interaction between the
graphical and parsing portions of the project are clearly described. Make thisfit ona
single page, but please do not omit any methods which make calls between major
components.

Two or three extra pages should show more detail regarding inheritance, containment,
and use within each of the portions. Try to avoid redundancy, if many classesare similar,
one or two examples plus a description of classesis enough. For example, if you have
many similar language object classes, we would prefer atree or chart showing inheritance
rel ationships between them and descriptions of common methods than complete UML
diagramsfor each. The sameistrue for the GUI, we don’t desire to know about every
object within each pull-down menu, afew concise examples will suffice.

Sequence Diagram

A single page should contain a sequence diagram for the following use case:
A user types“FD 10" in the GUI input window and clicks submit.

Design Questions
After completing your design, please (briefly!) answer the following questions:

How does your design facilitate the separation of the project into separate portions
which could be worked on individually?

What information is necessary for each of the magjor components to know about
the other(s)?

How would one go about testing the pieces independently?

How does your parser represent the commands and how does their evaluation
occur?

If you had to support loading and saving files (consisting of alist of previously
typed commands), how would you change (or not) your current design?

What would you need to do to your design to support an undo command?

README / Comments

InaREADME section, you should write any clarifications regarding your design you
think are necessary. Thisisalso agood place to point out any interesting or unique
elements of your design. If space permits, these comments may be included on your UML
diagrams, but please don’t sacrifice clarity.

Slogo

Logo GUI API

Thefollowing are alist of classes you may find helpful in designing your Logo GUI.
They all beginwith *Q’ asthey are stripped down versions of their QT equivalents. Y ou may
read further documentation on QT if you' d like (http://doc.trolltech.no/ [any version]) and use
classes mentioned therein. However, these ssmplified classes should be enough to design a
Simple Logo. Feel free to ignore astericks and amperstands for now, and assume that
QStrings behave much like any other strings you are already familiar with.

QWidget (QWidget *parent)

The QWidget classisthe base class of all user interface objects. Thewidget isthe atom of
the user interface: It receives mouse, keyboard and other events from the window system, and
paints arepresentation of itself on the screen. A widget that isn’t embedded in a parent widget
iscalled atop-level widget. The opposite of top-level widgets are child widgets. Most
widgetsin Qt are used only as child widgets. Useful public members and methods include:

int width ()

int height ()

voi d set Maxi munti ze (int maxw, int maxh)

voi d setFi xedSize (int w, int h)

void resize (int w, int h)

voi d show ()

voi d hide ()

QApplication ()

The QApplication class manages the GUI application’s control flow and main settings. It
contains the main event loop, where al events from the window system and other sources are
processed and dispatched. It also handles application initialization and finalization, and
provides session management. Finally, it handles most system-wide and application-wide
settings. Thereis precisely one QApplication object, no matter whether the application has 0,
1, 2 or more windows at the moment. This object initializes the application to the user’s
desktop settings. It performs event handling, meaning that it receives events from the
underlying window system and sends them to the destination widgets. Public methods:

voi d set Mai nW dget (QW dget *)

The main widget is the one which occupies the window space and, if closed, causes the application to exit.

(A practical thing to do is set the main widget to a layout object which contains your other widgets.)

int exec ()

Calling exec() is necessary to start the event loop which handles user interaction.
void quit ()

QGridLayout (QWidget *parent, int nRows, int nCols, int margin)

The QGridLayout class lays out widgetsin agrid. QGridLayout takes the space made
available to it (by its parent layout or by the mainWidget()), dividesit up into rows and
columns, and puts each widget it manages into the correct cell. Each column/row has a
minimum width and a stretch factor. The minimum width is the greatest of that set using
addCol Spacing()/addRowSpacing() and the minimum width of each widget in that column/
row. The stretch factor is set using setCol Stretch()/setRowStretch() and determines how
much of the available space the column/row will get over its necessary minimum. Each
managed widget or layout is put into acell of its own using addWidget().

void addWdget (QNdget * w, int row, int col)

void setRowStretch (int row, int stretch)

voi d addRowSpaci ng (int row, int spacing)

Slogo 5

QCanvas(QWidget *parent, int h, int v, int tilewidth, int tileheight) [and family]

The QCanvas class manages a 2D graphic areaand all the canvas items the area contains.
The QCanvasltem class provides a superclass for graphic objects on a QCanvas. A variety of
QCanvasltem subclasses provide immediately usable behaviour. However, QCanvasitemis
not intended for direct subclassing. It is much easier to subclass one of its subclasses, e.g.
QCanvasPolygonalltem (the commonest base class), QCanvasLine, or QCanvasText. A
QCanvasltem subclass is given the QCanvas object in its constructor, and inherits
functionality like move(int x, int y), setX(int x), sexY (int y) from QCanvasltem. For
example, QCanvasLine:

QCanvasLi ne (QCanvas * canvas)

void setPoints (int xa, int ya, int xb, int yb)

(.. would be useful for placing lines as a certain triangular QCanvasPolygonal ltem moves)

QPopupMenu (QWidget *parent)

A popup menu widget is aselection menu. It can be either a pull-down menu in amenu
bar or a standalone context (popup) menu. Pull-down menus are shown by the menu bar
when the user clicks on the respectiveitem. A popup menu consists of alist of menu items, to
which you add items with insertitem(). Separators are inserted with insertSeparator(). For
submenus, you pass a QPopupMenu in your call to insertitem().

QMenuBar (QWidget *parent)

The QMenuBar class provides a horizontal menu bar. A menu bar consists of alist of pull-
down menu items. Y ou add menu items with insertitem(). For example, asuming that
menubar is a pointer to a QMenuBar and filemenu is a pointer to a QPopupMenu, the
following statement inserts the menu into the menu bar:

menubar->insertltem("&File", filenenu);

QPushButton (const QString & text, QWidget *parent)

The push button, or command button, is perhaps the most commonly used widget in any
graphical user interface. Clicking a button tells the computer to perform some action or
answers a question. QPushButtons have a method clicked() which should befilled in by a
button class subclassing QPushButton and code the actions to be performed upon clicking.

QMultiLineEdit (QWidget *parent)

The QMultiLineEdit widget is a simple editor for inputting text.
i nt numLi nes()
QString text ()

Returns a copy of the whole text. If the multi-line edit contains no text, a null string is returned.
QString textLine (int |ine)
Returns the text at line number line (possibly the empty string), or a null string if line is invalid.

QMessageBox (QWidget *parent)

Creating a QM essageBox class pops up a dialog with a message, an icon, and some
buttons of choice (Yes, No, Ok, or Cancel). This enum and method:

enum{ NoButton = 0, &k = 1, Cancel = 2, Yes =3, No = 4}

int information (QWN dget * parent, const QString & caption, const QString

& text, int button0)

should be all that you need to pop up message windows, for example:

nmessBox. i nfornati on(_w dget, "lncorrect conmand", "Type a real
conmand!!'", "OK");

Slogo 6

Appendix A

Simple L ogo L anguage Details

This document contains a description of the Simple Logo language, including supported

commands, their usage and effects.

L anguage Structure

A word beginning with acolon isavariable.

* A word beginning with aletter isacommand / subroutine name.

A word beginning with a number is a numerical value.

» Words are delimited by spaces, tabs, newlines, or brackets.

» Names of variables and commands are case-insensitive in Simple Logo.

* All variables are global.

» All literal values are integers greater to or equal to 0. (Note: Commands such as

Difference can produce a negative value.)

*Thereisvariable assignment. A variable assignment can have one of three forms:
MAKE : var _nanme COMVAND
MAKE :var _nane :other_var name
MAKE : var _name nunber

For exanple, the follow ng are valid:
MAKE :foo SUM 12 34

MAKE : headi ng HEADI NG

MAKE : headi ng FD XCOR

MAKE : bar :foo

MAKE :fish 23

» Commandswill bein prefix form; that is, the command name will precede the arguments.

* All commands must return a value. If no return value is defined, the command should
return O.

* There are no booleans. All values greater than zero signify TRUE.
* The supported conditional is|F. If the command or variable or literal hasavaue of 0, the
body of the IF should be skipped, otherwise it should be executed.
| F <val ue> [
i nstruction
i nstruction

]
 The supported loop is REPEAT. The instructions in the body should be executed the
number of times given by the value or variable.
REPEAT <val ue> [
instruction
i nstruction

Slogo

* The command name TO denotes the beginning of a subroutine definition. The next
argument should be the name of the subroutine. Then the body of the subroutine is
specified. NOTE: Y ou can assume that no one will ever try to redefine a primitive such
as FD or IF or MAKE. However, you must properly implement redefinition of
subroutines.

TO <subrouti ne_nane> |
instruction
instruction

Table 1: Math Operations

Name Description

SUM numl1 num2
DIFFERENCE numl1 num2
PRODUCT numl num2
QUOTIENT numl1 num2
REMAINDER numl1 num2

returns the sum of itsinputs

returns the difference of itsinputs

returns the product of itsinputs

returns the quotient of its inputs

returns the remainder on dividing numl by

num2. Theresult is an integer with the same
sign as num2

Table 2: Drawing Operations and Turtle Commands

Command Description

FORWARD dist moves the turtle forward by the amount specified

FD dist

BACK dist moves the turtle backwards by the amount specified

BK dist

LEFT degrees turns the turtle counterclockwise by the specified angle

LT degrees

RIGHT degrees turns the turtle clockwise by the specified angle

RT degrees

SETXY xcor ycor moves the turtle to an absolute screen position.

SETX xcor moves the turtle horizontally to a new absolute horizontal
coordinate

SETY ycor moves the turtle vertically to a new absolute vertical coor-
dinate.

HOME moves the turtle to the center of the screen (0 0)

SETPENCOLORTrghb changes the pen color to the specified rgb color (0 to 255)

Slogo

Table 2: Drawing Operations and Turtle Commands

Command Description
XCOR returns the turtle’s X coordinate
YCOR returnstheturtle’sY coordinate
HEADING returns the turtle's heading in degrees
SHOWTURTLE makes the turtle visible
ST
HIDETURTLE makes the turtle invisible
HT
CLEAN clears the drawing area (the turtles statistics do not reset)
CLEARSCREEN erases the drawing area and sends the turtle to the home
Cs position (Like CLEAN and HOME)
PENDOWN sets the pen’s position to DOWN
PD
PENUP sets the pen’s position to UP
PU

Table 3: Control Structuresand Procedures

Command Description
REPEAT numOrVar [runs instructionlist numOrVar times
instructionlist

]

|F varOrCommand [
instructionlist

]

if varOrCommand is not O, run instructionlist

TO subroutine [

defines a new subroutine (command) named subr_name.

instructionlist When invoked, the subroutine will execute the body of
] instructions included in the definition.
Table 4: Boolean Operations
Command Description
LESS? num1 num2 returns 1(:TRUE) if itsfirst input is strictly less than its
second, or O otherwise (:FALSE)
GREATER? numl num2 | returns 1if itsfirst input is strictly greater than its second,

or O otherwise

EQUAL?thingl thing2

returns 1 if the two inputs are equal, O otherwise

Slogo

Table 4: Boolean Operations

Command Description
NOTEQUAL?thingl returns 1 if the two inputs are not equal, O otherwise
thing2
PENDOWN? returns 1 (: TRUE) if the penisdown, 0 (:FALSE) if it's up.

Slogo

10

Appendix B
Slogo Grammar

Thisisthe grammar which describes the Simple Logo language. It describesthe samerulesasare
contained in Appendix A, only more formally. Those students who have taken CS 31 should be
reminded of the Compiler assignment and the Blaise grammar.

Table5: Slogo Terminals

num Aninteger >=0

string A series of ASCII characters, excluding *:’

Note: A string is defined as starting with a letter, and containing only letters, numbers, or under-
scores.

Table 6: Slogo Grammer Rules

<Input> == <List_of_Instructions>
<List_of_Subroutines>
<List_of_Instructions>

<List_of Subroutines> ==

<List_of_Subroutines> == <Subroutine_Declration>
<List_of Subroutines>

<Subroutine_Declaration> == TO <Subroutine_Name> |
<List_of_Instructions>]

<List_of Instructions> ==

<List_of_Instructions> == <Instruction><List_of Instructions>

<Instruction> == <No_Arg_Command>

<Instruction> == <One_Arg_Command><Value>

<Instruction> == <Two_Arg_Command><Vaue><Vaue>

<Instruction> == <Three_Arg_Command><Vaue><Vaue>
<Value>

<Instruction> == IF <Vaue> [<List_of_Instructions>]

<Instruction> == REPEAT <Value> [<List_of Instruction>
]

<Instruction> == MAKE <Variable Name><Value>

Slogo 11

<Variable_Name> == . string
<Subroutine_Name> == string

<Vaue> == <Instruction>

<Vaue> == num

<Value> == <Variable Name>
<No_Arg_Command> == HOME
<No_Arg_Command> == HEADING
<No_Arg_Command> == CS
<No_Arg_Command> == CLEARSCREEN
<No_Arg_Command> == PU
<No_Arg_Command> == PENUP
<No_Arg_Command> == PD
<No_Arg_Command> == PENDOWN
<No_Arg_Command> == PENDOWN?
<No_Arg_Command> == BYE
<No_Arg_Command> == XCOR
<No_Arg_Command> == YCOR
<No_Arg_Command> == HIDETURTLE
<No_Arg_Command> == HT
<No_Arg_Command> == SHOWTURLE
<No_Arg_Command> == ST
<No_Arg_Command> == CLEAN
<No_Arg_Command> == <Subroutine_Name>

Slogo

<One_Arg_Command> == FORWARD
<One_Arg_Command> == FD
<One_Arg_Command> == BACK
<One_Arg_Command> == BK
<One_Arg_Command> == LEFT
<One_Arg_Command> == LT
<One_Arg_Command> == RIGHT
<One_Arg_Command> == RT
<One_Arg_Command> == SETX
<One_Arg_Command> == SETY
<One_Arg_Command> == SAVE
<One_Arg_Command> == LOAD
<One_Arg_Command> == MINUS
<Two_Arg_Command> == NOTEQUAL?
<Two_Arg_Command> == EQUAL?
<Two_Arg_Command> == GREATER?
<Two_Arg_Command> == LESS?
<Two_Arg_Command> == SUM
<Two_Arg_Command> == DIFFERENCE
<Two_Arg_Command> == PRODUCT
<Two_Arg_Command> == QUOTIENT
<Two_Arg_Command> == REMAINDER
<Two_Arg_Command> == SETXY
<Three_Arg_Command> == SETPENCOLOR

Slogo

	Welcome!
	Your task
	Background
	Functionality
	How to think about the project
	Parsing
	Graphics
	Teamwork
	Design Workshop
	Requirements
	Class relationships
	Sequence Diagram
	Design Questions
	README / Comments

	Logo GUI API
	QWidget (QWidget *parent)
	QApplication ()
	QGridLayout (QWidget *parent, int nRows, int nCols, int margin)
	QCanvas(QWidget *parent, int h, int v, int tilewidth, int tileheight) [and family]
	QMenuBar (QWidget *parent)
	QPushButton (const QString & text, QWidget *parent)
	QMultiLineEdit (QWidget *parent)
	QMessageBox (QWidget *parent)

	Appendix A
	Table 1: Math Operations
	Table 2: Drawing Operations and Turtle Commands
	Table 3: Control Structures and Procedures
	Table 4: Boolean Operations
	Table 5: Slogo Terminals
	Table 6: Slogo Grammer Rules

