
CS 314 Principles of Programming Languages

Scheme Programming Project

Due date: Wednesday, November 27, 11:59pm

In this project, you will implement a spell checker that is based on hash functions. Hash
functions map character strings (e.g. ”hello”) to integer values. Each hash function has
a range of 0..size, i.e., can map a character string to an integer value greater than 0, but
smaller than size. The index generated by applying hash function h to a word w, i.e., h(w),
can be used to index into a data structure that stores information associated with w. For
instance, symbol tables typically use hashing to map identifiers to their attributes.

Hashing can also be used to implement a spell checker. Instead of comparing a word w
with entries in a dictionary of words, the word’s hash value h(w) is used to index into a
bitvector. A bitvector is an array of boolean, i.e., each entry is either true (= 1) or false
(= 0). If h(w) = false, w is assumed to be spelled incorrectly. The bitvector is created
by applying a hash function to each word w in the directory, setting the positions in the
bitvector to true (1) for every computed hash value, i.e., bitvector(h(w)) := 1 for all w in
the dictionary. Typically, the memory requirement of a dictionary of words is much larger
than the memory requirement of its corresponding bitvector. In addition, indexing into the
bitvector (or any other array data structure) is typically much faster than using any lookup
technique based on string comparisons.

Unfortunately, the more compact representation and faster access has its price. Clearly,
the choice of the hash function will determine the quality of the spell checker. If a word in
the dictionary has the same hash value as a misspelled word, the spell checker will fail to
report the misspelled word. In order to increase the chances of mapping a misspelled word
to a bitvector location that is marked false, we can

• use a set of (different) hash functions h1...hn instead of just a single hash function h;
instead of marking (checking) only h(w) as true in the bitvector, we now mark (check)
all hi(w) as true.

• increase the range of the hash functions and thereby generating a sparser bitvector,
i.e., a bitvector with many more 0 entries than 1 entries.

In this project, you will write a spell checker that allows the experimentation with dif-
ferent sets of hash functions and their ranges. Scheme is a language well suited for “rapid
prototyping”, i.e., allows a quick implementation of a working prototype. We will repre-
sent a bitvector in Scheme as a list of indices, i.e., a list of integer values for
which the bitvector entry is 1 (e.g. vector [0 0 1 0 1 0 0] is represented as list ’(2 4) ).
Due to this ”inefficient” representation, our spell checker may only be used in environments
where space and speed is not crucial.



1 Hash Functions

Our hash functions consist of two main steps. In the first step, the input word w is mapped
to an integer value, called its key. In the second step, the key is mapped to its final hash
value. We will compute w’s key by associating an integer value with each letter (symbol) in
w, and then multiplying the resulting values. Note: In this project we only consider
LOWER CASE letters and words. We will use the following key function:

key(w) =
length(w)∏

i=1

ctv(wi)

where ctv (“character-to-value”) maps ’a’ to 1, ’b’ to 2, ... and z to 26. For example,
key(“class”) = ctv(’c’) ∗ ctv(’l’) ∗ ctv(’a’) ∗ ctv(’s’) ∗ ctv(’s) = 3 ∗ 12 ∗ 1 ∗ 19 ∗ 19 = 12996.

1.1 Division Method

In the division method, a key k is mapped into size slots by taking the remainder (modulo)
of k divided by size. In other words, the hash functions have the form:

h(k) = k mod size

size should be a prime number in order to generate a more uniform spread of the hash
function values over the function’s entire 0..size − 1 range.

1.2 Multiplication Method

The multiplication method for creating hash functions operates in two steps. First, we
multiply the key k by a constant A (we choose A=0.6180339887), and then extract the
fractional part of kA. Then, we multiply this value with size and take the floor of the result.
In other words, the hash functions have the form:

h(k) = bsize(kA − bkAc)c

The desired uniform spread of the hash function over its entire range is not dependent
on a particular selection of size.

2 Project Description

For this project, words are represented as lists of lower case symbols, e.g., the word “class”
is represented as ’(c l a s s). The project consists of three parts:

1. Write the key function key which takes a word as input and maps it to its key using
the provided cvt character to value mapping.



2. Write a function that generates hash functions based on the division method
gen-hash-division-method, and a function that generates hash functions based on
the multiplication method gen-hash-multiplication-method.

3. Write a function gen-checker that takes as input a list of hash functions and a dic-
tionary of words, and returns a spell checker. A spell checker is a function that takes a
word as input and returns either #t or #f, indicating a correctly or incorrectly spelled
word, respectively. Your implementation of gen-checker should generate the bitvector
representation for the input dictionary exactly once.

For the implementation of these functions, you can use Scheme functions such as modulo
and floor. Your are encouraged to use the reduce function at least once in your imple-
mentation. The definition of reduce is given in file include.ss. Note that a hash function
based on a multiplication method may return integer values of the form 17.0 instead of just
17 . Use the Scheme “=” function (numeric equality) to test for equality. “eq?” or “equal?”
would not work.

3 How To Get Started

Copy the 4 files spell.ss, include.ss, test-dictionary.ss and dictionary.ss into your
own subdirectory. You are only allowed to modify the spell.ss file. File test-dictionary.ss
contains a small dictionary consisting of only three words. Use it to debug your program.
File dictionary.ss contains a list of over 45,000 words allowing you to generate a realistic
spell checker. You can switch between different dictionaries by loading the corresponding
.ss file.

4 Grading

You will submit your versions of file spell.ss. No other file should be modified, and no
additional file(s) may be used. The exact electronic submission procedure using the “handin”
command can be found on our general project web site. It is your responsibility to ensure
that the submission was successful.

Your programs will be graded based on programming style and functionality. Function-
ality will be verified through automatic testing on a set of test cases.


