
CS 257: Non-Imperative Programming:
Scheme!

Project Warm Up (Spring ’05)

The following problems are warm up exercises for the final project, a BASIC

to Scheme translator. Renumbering BASIC programs and eliminating for

and next statements by translating them into let’s, if-then’s and goto’s will

make the job of writing your translator significantly easier.

1. Write a function called renumber which takes a BASIC program repre-

sented as a list of numbered statements, prog, an initial line number,

start, and an increment, step as arguments. It returns a program where

the initial line number is start and where the difference between succes-

sive line numbers is step. Note that all line numbers, and all references

to those line numbers in goto, gosub, and if-then statements, must be

consistently renumbered. For example,

> (define quadratic2

’((100 input "What is the value of A" a)

(110 input "What is the value of B" b)

(120 input "What is the value of C" c)

(130 let d = ((b * b) - (4 * (a * c))))

(140 if (d < 0) then 190)

(150 gosub 210)

(160 print "The 1st root is: " (((-1 * b) + s) / (2 * a)))

(170 print "The 2nd root is: " (((-1 * b) - s) / (2 * a)))

(180 end)

(190 print "Imaginary roots.")

(200 end)

(210 let s = 1)

(220 for i = 1 to 10)

(230 let s = ((s + (d / s)) / 2))

(240 next i)

(250 return)))

> (renumber quadratic2 1000 10)

((1000 input "What is the value of A" a)

(1010 input "What is the value of B" b)

(1020 input "What is the value of C" c)



(1030 let d = ((b * b) - (4 * (a * c))))

(1040 if (d < 0) then 1090)

(1050 gosub 1110)

(1060 print "The 1st root is: " (((-1 * b) + s) / (2 * a)))

(1070 print "The 2nd root is: " (((-1 * b) - s) / (2 * a)))

(1080 end)

(1090 print "Imaginary roots.")

(1100 end)

(1110 let s = 1)

(1120 for i = 1 to 10)

(1130 let s = ((s + (d / s)) / 2))

(1140 next i)

(1150 return))

>

Note: Line feeds and spaces have been added to the above to improve

clarity. Your function need not add line feeds or spaces. You may

assume that the lines of the input program are numbered in order and

that there are no duplicate line numbers. You may not assume that

the line numbers increase uniformly–that is the point of renumbering.

2. Write a function called transform-for-stmt which takes a for statement

from a BASIC program, stmt, and returns a let statement which will

initialize the for statement’s loop variable. For example,

> (transform-for-stmt ’(10 for i = 1 to k))

((10 let i = 1))

>

3. Write a function called transform-next-stmt which takes a next state-

ment, stmt, and a BASIC program, prog, as input. It returns a list of

three BASIC statements. The first is an if-then statement, the second

is a let statement and the third is a goto statement. These statements

do the following

• Compare the loop variable current value to its final value and

jump to the line following the next statement if it exceeds it.

• Increment the loop variable



• Jump to the line following the corresponding for statement.

For example,

> (define bar ’((10 for i = 1 to k) (20 print i) (30 next i) (40 end)))

> (transform ’(30 next i) bar)

((30 if (i >= k) then 40) (30.1 let i = (i + 1)) (30.2 goto 20))

>

4. Write a function called transform which renumbers a BASIC program

with a starting line number of 0 and an increment of 1 and eliminates

all for and next statements by translating them into let’s, if-then’s, and

goto’s. For example,

> (define foo

’((10 for i = 1 to k)

(20 print i)

(30 next i)

(40 end)))

> (transform foo)

((1 let i = 1)

(2 print i)

(3 if (i >= 10) then 6)

(4 let i = (i + 1))

(5 goto 2)

(6 end))

>

Here is a second example:

> (define bar

’((10 for i = 1 to 10)

(20 for j = 1 to 10)

(30 print (i * j))

(40 next j)

(50 next i)

(60 end)))

> (transform bar)



((1 let i = 1)

(2 let j = 1)

(3 print (i * j))

(4 if (j >= 10) then 7)

(5 let j = (j + 1))

(6 goto 3)

(7 if (i >= 10) then 10)

(8 let i = (i + 1))

(9 goto 2)

(10 end))

>


