CS 357: Declarative Programming
Homework 4

Give definitions for the following functions in Haskell.

1. The function stutter takes a list of elements and returns a list where every element has been
duplicated. For example,

*Main> stutter "Hello World"
"HHeelllloo WWoorrlldd"
*Main> stutter [1,2, 3]
[1,1,2,2,3,3]

2. The function compress eliminates consecutive duplicate elements of a list. For example,

*Main> compress "HHeelllloo WWoorrlldd"
"Helo World"

*Main> compress [1,2,2,3,3,3]

[1,2,3]

3. The function findIndices takes a predicate and a list as arguments and returns a list of num-
bers indicating the positions of elements in the list which satisfy the predicate. For example,

*Main> findIndices (< 'a’) "AbCdef"
(0,2]

*Main> findIndices (== 0) [1,2,0,3,0]
[2,4]

The function intersect takes two lists as arguments and returns a list of elements common to
both lists. For example

*Main> intersect "abc" "cat"
naam

*Main> intersect [1,2,3] [8]

[]

*Main> intersect [3,2,1] [1,2,3]
[3,2,1]

4. The function isPrefixOf takes two lists as argument and returns True iff the first list is a prefix
of the second list. For example,

*Main> "foo" ‘isPrefixOf‘ "foobar"
True

*Main> isPrefixOf [1,2,3] [4,5,6]
False



10.

. The function isSuffixOf takes two lists as argument and returns True iff the first list is a suffix

of the second list. For example,

*Main> "bar" ‘isSuffixOf‘' "foobar"
True

*Main> isSuffixOf [1,2,3] [4,5,0]
False

. The dot product of two vectors i and V of length n (written i - V) is defined to be Y.\ u;v;.

Define a function dot which takes two lists of numbers of equal length and returns their dot
product.

*Main> [0,0,1] ‘dot‘ [0,1,0]
0

. The function increasing takes a list of enumerable elements as its argument and returns 7rue

if the list is sorted in increasing order and False otherwise.

*Main> increasing "ABCD"
True

*Main> increasing [100,99..1]
False

Write increasing.

. To ‘decimate’ literally means to kill every tenth man (it was a punishment in the Roman

legions). Define a function decimate which removes every tenth element from a list. for
example,

*Main> decimate [1..21]
(1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21]

. Define a function encipher which takes two lists of equal length and a third list. It uses

the first two lists to define a substitution cipher which it uses to encipher the third list. For
example,

*Main> encipher ['A’..’Z"] ['a’..'z'] "THIS"
"this"

Define a function prefixSum which takes a list of numbers as its argument and returns a list
of sums of all prefixes of the list. For example,



11.

12.

*Main> prefixSum [1..10]
(1,3,6,10,15,21,28,36,45,55]
*Main> prefixSum [2, 5]

(2, 7]

The function select takes a predicate and two lists as arguments and returns a list composed
of elements from the second list in those positions where the predicate, when applied to the
element in the corresponding positions of the first list, returns True.

*Main> :t select

select :: (t -> Bool) -> [t] —-> [a] —-> [a]
*Main> select even [1..26] "abcdefghijklmnopgrstuvwxyz"
"bdfhjlnprtvxz"

*Main> select (<= "g’) "abcdefghijklmnopgrstuvwxyz" [1..26]
[(1,2,3,4,5,6,7]

The function numbers which takes a list of integers as its argument and returns the integer
which has those numbers as digits. For example,

*Main> numbers [1..4]
1234

Write numbers using a tail-recursive helper function defined inside of a let expression or
using where.



