CS 357: Declarative Programming
Homework 5

1. Define a function myTakeWhile which takes a predicate and a list as arguments and returns
the prefix of the list satisfying the predicate. For example,

*Main> myTakeWhile (/= ' ') "This is practice."
"This"

2. Define a function mySpan which takes a predicate and a list as arguments and returns a
pair of lists where the first element of the pair is the portion of the list which the function
myTakeWhile would return and the second element is the remainder of the list. For example,

*Main> mySpan (/= ' ') "This is practice."
("This"," is practice.")

3. The function combinations3 takes a list as its argument and returns a list of length three lists
representing all possible subsets of size three. For example,

*Main> :t combinations3

:t combinations3

combinations3 :: (Ord a) => [a] —> [[all]l

*Main> combinations3 "ABCDE"

combinations3 "ABCDE"

["ABC", "ABD", "ABE", "ACD", "ACE", "ADE", "BCD", "BCE", "BDE", "CDE"]

Write combinations3 using a list-comprehension. You may assume that the input list contains
no duplicates.

4. The function runLengthEncode takes a list of values as its argument and returns a list of pairs
of values and run lengths. See

http://en.wikipedia.org/wiki/Run_length_encoding
For example,

*Main> runLengthEncode [4,2,2,1,1,1,1,4,4,4,4]
[(4,1),(2,2),(1,4), (4,4)]

*Main> runLengthEncode "foo"

(("£7,1), ("o’ ,2)]

Write runLengthEncode. Hint: Divide and conquer. Ask yourself: What helper functions
would make this problem trivial and then write those. Make use of higher-order functions
when appropriate. This is the key to modular design and you will complete your homework
faster as a bonus.

. The function runLengthDecode takes a list of pairs of values and run lengths and returns a
list of values. For example,

*Main> runLengthDecode [(4,1), (2,2),(1,4), (4,4)]
[412121111111114141414]

Write runlLengthDecode.

. Define a function splitText which takes a string of text and a predicate and returns a list
of subtstrings comprised of contiguous characters for which the predicate is satisfied. For
example,

*Main> splitText (/= ' ') "This is practice."
["This","is", "practice."]

. Use a list comprehension to define a function encipher which takes two lists of equal length
and a third list. It uses the first two lists to define a substitution cipher which it uses to
encipher the third list. For example,

*Main> encipher ['A’..’Z"] [Ta’..'z'] "THIS"
"this"

. The Goldbach conjecture states that any even number greater than two can be written as the
sum of two prime numbers. Using list comprehensions, write a function goldbach, which
when given an even number #n, returns a list of all pairs of primes which sum to n. Note: You
will have to write a function which tests an integer for primality and this should be written
as a list comprehension also. For example,

*Main> goldbach 6

[(3,3)]

*Main> :t goldbach
Int —> [(Int,Int)]

. The function increasing takes a list of enumerable elements as its argument and returns 7rue
if the list is sorted in increasing order and False otherwise.

*Main> increasing "ABBD"
True

*Main> increasing [100,99..1]
False

Write increasing using the function and and a list comprehension.

10. The function select takes a predicate and two lists as arguments and returns a list composed

11.

12.

of elements from the second list in those positions where the predicate, when applied to the
element in the corresponding positions of the first list, returns True.

*Main> :t select

select :: (t —-> Bool) —> [t] -—> [a] —> [a]
*Main> select even [1..26] T"abcdefghijklmnopgrstuvwxyz"
"bdfhjlnprtvxz"

*Main> select (<= "g’) "abcdefghijklmnopgrstuvwxyz" [1..26]
[(1,2,3,4,5,6,7]

Write select using list comprehensions.

The function combinations takes an integer k and a list of elements of typeclass Ord as its
arguments and returns a list of length k lists representing all possible subsets of size k. For
example,

*Main> :t combinations

combinations :: (Ord a) => Int —> [a] -> [[a]l]

*Main> combinations 3 "ABCDE"

["ABC n , "ABD n , "ABE n ’ "ACD n , "ACE n , "ADE n , "BCD n , n BCE n , n BDE n , n CDE n]

Write combinations. Hint: Don’t use list-comprehensions. Do use increasing. Write combi-
nationsl1. Use combinationsl and map to write combinations2. Now use combinations2 and
map to write combinations3. Abstract the pattern.

Addition and multiplication of complex numbers are defined as follows:
(ct+iy)+(utiv) = (xtu)+(y+v)
(x+iy) X (u+iv) = (xu—yv)+ (xv+yu)i

A complex integer is a complex number with integer real and imaginary parts. Define a data
type for complex integers called ComplexInteger with selector functions real and imaginary
which return the real and imaginary parts. Give minimum instance declarations for the Egq,
Show, and Num type classes. For example,

*Main> real (ComplexInteger 1 2)

1

*Main> imaginary (ComplexInteger 2 3)

3

*Main> (ComplexInteger 1 2) == (ComplexInteger 3 4)
False

*Main> (ComplexInteger 1 2)

1+2i

*Main> (ComplexInteger 1 2) x (ComplexInteger 3 4)
-5+101

