1. Define a function `takeWhile` which takes a predicate and a list as arguments and returns the prefix of the list satisfying the predicate. For example,

```
*Main> takeWhile (/= ' ') "This is practice."
"This"
```

2. Define a function `span` which takes a predicate and a list as arguments and returns a pair of lists where the first element of the pair is the portion of the list which the function `takeWhile` would return and the second element is the remainder of the list. For example,

```
*Main> span (/= ' ') "This is practice."
("This"," is practice.")
```

3. Consider the following data type declaration:

```
data Maybe a = Nothing | Just a
```

Define the function `findKey` (described in class) with type signature

```
findKey :: (Eq a) => a -> [(a,b)] -> Maybe b
```

using a list comprehension.

4. Define a function `splitText` which takes a string of text as its argument and returns a list of words with spaces removed. For example,

```
*Main> splitText (/= ' ') "This is practice."
("This","is","practice.")
```

5. Without using explicit recursion, define a function `encipher` which takes two lists of equal length and a third list. It uses the first two lists to define a substitution cipher which it uses to encipher the third list. For example,

```
*Main> encipher ['A'..'Z'] ['a'..'z'] "THIS"
"this"
```

6. Consider the following data type declaration:

```
data Maybe a = Nothing | Just a
```

Define the function `findKey` (described in class) with type signature
findKey :: (Eq a) => a -> [(a,b)] -> Maybe b

using foldr.

7. The variance of a list of numbers of length n is the average squared difference between each number and the numbers’ mean: \[\sum_{i=1}^{n} (x_i - \bar{x})^2 / n \] where \bar{x} is the numbers’ mean: \[\sum_{i=1}^{n} x_i / n \]. Without using explicit recursion, give a definition of a function, variance, which works as follows:

*Main> variance [1..10]
8.25

8. Give definitions for the following functions using foldr: product, sum, or, and, ++, !!, map, filter, and concat.

9. An $n \times n$ matrix can be represented as a length n list of length n lists of numbers. An $n \times n$ identity matrix is zero everywhere except on its diagonal where it is one. Define a function matrixId which takes an integer n as its argument and returns an $n \times n$ identity matrix. For example,

*Main> matrixId 3
[[[1,0,0],[0,1,0],[0,0,1]]

10. An $n \times m$ matrix can be represented as a length n list of length m lists of numbers. The function rho takes a list of length $n \times m$ and returns a length n list of length m lists. For example,

*Main> rho 2 3 [1..6]
[[[1,2,3],[4,5,6]]

11. The transpose of a $n \times m$ matrix A is an $m \times n$ matrix A^T where the (i,j)-th element of A^T is the (j,i)-th element of A. Define a function transpose which takes a matrix represented as a length n list of length m lists of numbers as its argument and returns the transpose represented as a length m list of length n list of numbers. For example,

*Main> transpose (rho 2 3 [1..6])
[[[1,4],[2,5],[3,6]]

12. Define a function matrixElement which takes a matrix represented as a list of lists of numbers and two integers i and j as arguments and returns the (i,j)-th element of the matrix. For example,

*Main> matrixElement (rho 6 7 [1..]) 5 4
40
13. The dot product of two vectors \vec{u} and \vec{v} of length n (written $\vec{u} \cdot \vec{v}$) is defined to be $\sum_{i=1}^{n} u_i v_i$. Without using explicit recursion, define a function `dot` which takes two lists of numbers of equal length and returns their dot product.

 *Main> [0,0,1] `dot` [0,1,0]
 0

14. Two matrices A and B can be multiplied if the number of columns of A equals the number of rows of B. The (i,j)-th element of the product matrix $C = AB$ is defined as follows: $c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$ where m is the number of columns of A. Define a function `matrixProduct` which takes two matrices represented as lists of lists of numbers and returns the matrix product represented in the same manner. Hint: c_{ij} is the dot product of the i-th row of A and the j-th row of B^T.

 *Main> matrixProduct (rho 2 3 [1..6]) (rho 3 2 [1..6])
 [[22,28],[49,64]]

15. Define a function `prefixSum` which takes a list of numbers as its argument and returns a list of sums of all prefixes of the list. For example,

 *Main> prefixSum [1..10]
 [1,3,6,10,15,21,28,36,45,55]

16. The function `select` takes a predicate and two lists as arguments and returns a list composed of elements from the second list in those positions where the predicate, when applied to the element in the corresponding positions of the first list, returns `True`.

 *Main> :t select
 select :: (t -> Bool) -> [t] -> [a] -> [a]
 *Main> select even [1..26] "abcdefghijklmnopqrstuvwxyz"
 "bdfhjlnprtvxz"
 *Main> select (<= 'g') "abcdefghijklmnopqrstuvwxyz" [1..26]
 [1,2,3,4,5,6,7]

17. The Goldbach conjecture states that any even number greater than two can be written as the sum of two primes. Using list comprehensions, write a function `Goldbach`, which given an even number n returns a list of pairs of prime numbers which sum to n. Note: You will have to write a function which tests an integer for primality and this should be written as a list comprehension also. For example,
*Main> goldbach 6
[(3,3)]
*Main> :t goldbach
:t goldbach
Int -> [(Int,Int)]
*Main>

18. To ‘decimate’ literally means to kill every tenth man (it was a punishment in the Roman legions). Define a function \textit{decimate} which removes every tenth element from a list. for example,

*Main> decimate [1..21]
[1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21]

19. Write a function called \textit{smallest} which returns the k smallest numbers from a list of numbers.