```(define iota
(lambda (n)
(letrec
((loop
(lambda (m acc)
(if (= m 0)
acc
(loop (sub1 m) (cons m acc))))))
(loop n ()))))

(define fact
(lambda (n)
(apply * (iota n))))

;; e = 1/0! + 1/1! + 1/2! + 1/3! + 1/4! ...
(define e (apply + (map / (map fact (map sub1 (iota 10))))))

;; (perms-starting-with 'a '(a b c)) => '((a b c) (a c b))
(define perms-starting-with
(lambda (item ls)
(map (lambda (perm) (cons item perm))
(permutations (delete item ls)))))

;; (permutations '(a b c)) => ((a b c) (a c b) (b a c) (b c a) (c a b) (c b a))
(define permutations
(lambda (ls)
(if (null? ls)
'(())
(apply
append
(map (lambda (item) (perms-starting-with item ls)) ls)))))

;; (powerset '(a b c)) => ((a b c) (a b) (a c) (a) (b c) (b) (c) ())
(define powerset
(lambda (ls)
(if (null? ls)
'(())
(append (map (lambda (set) (cons (car ls) set)) (powerset (cdr ls)))
(powerset (cdr ls))))))

;; better
(define powerset
(lambda (ls)
(if (null? ls)
'(())
(let ((half (powerset (cdr ls))))
(append (map (lambda (set) (cons (car ls) set)) half)
half)))))

;; (make-row * 2 '(1 2 3)) => (2 4 6)
(define make-row
(lambda (proc x ys)
(map (lambda (y) (proc x y)) ys)))

;; (outer-product * (iota 3) (iota 3)) => ((1 2 3) (2 4 6) (3 6 9))
(define outer-product
(lambda (proc xs ys)
(map (lambda (x) (make-row proc x ys)) xs)))

;; (select even? '(0 1 2) '(a b c)) => (a c)
(define select
(lambda (pred ls0 ls1)
(cond ((null? ls0) '())
((pred (car ls0))
(cons (car ls1) (select pred (cdr ls0) (cdr ls1))))
(else
(select pred (cdr ls0) (cdr ls1))))))

;; (tally even? '(1 2 3 4)) => 2
(define tally
(lambda (pred)
(lambda (ls)
(cond ((null? ls) 0)
((pred (car ls))
(else
((tally pred) (cdr ls)))))))

(define fold
(lambda (proc seed ls)
(if (null? ls)
seed
(proc (car ls)
(fold proc seed (cdr ls))))))
;; better
(define tally
(lambda (pred)
(lambda (ls)
(fold (lambda (x y) (if (pred x) (add1 y) y)) 0 ls))))

;; (primes 20) => (2 3 5 7 11 13 17 19)
(define primes
(lambda (n)
(let ((ls (iota n)))
(select
(lambda (x) (= x 2))
(map (tally zero?) (outer-product remainder ls ls))
ls))))

;; (goldbach 98) => ((19 79) (31 67) (37 61) (61 37) (67 31) (79 19))
(define goldbach
(lambda (n)
(let ((primes (primes n)))
(apply append
(apply append
(outer-product
(lambda (x y) (if (= n (+ x y)) (list (list x y)) '()))
primes
primes))))))

;; (identity 3) => ((1 0 0) (0 1 0) (0 0 1))
(define identity
(lambda (n)
(let ((ls (iota n)))
(outer-product
(lambda (x y) (if (= x y) 1 0))
ls
ls))))

;; (transpose '((1 2 3) (4 5 6) (7 8 9)) => ((1 4 7) (2 5 8) (3 6 9))
(define transpose
(lambda (A)
(apply map list A)))

(define inner-product
(lambda (u v)
(apply + (map * u v))))

;; (matrix-product '((1 1) (1 -1)) '((1 2) (3 4))) => ((4 6) (-2 -2))
(define matrix-product
(lambda (A B)
(outer-product inner-product A (transpose B))))
```