CS 422/522: Image and Pattern Analysis Homework 3 (Spring '05)

1. Characterize the following as linear, or non-linear, and as even, odd, or neither, and prove your characterization. In these functions, x is real, and z is complex.
(a) $f(x)=7 x+1$
(b) $f(x)=x^{2}-x$
(c) $f(x)=e^{-x^{2}}$
(d) $f(z)=3 z-2$
(e) $f(z)=z-z^{*}$
(f) $f(z)=\operatorname{Im}(z)$
(g) $f(z)=z^{\frac{1}{2}}$
2. The \int operator takes a function, f, as its argument and returns the antiderivative of the function: $f \xrightarrow{\int} \int f(t) d t$. Prove that the \int operator is:
(a) Linear.
(b) Shift-invariant.
3. Prove that $\sin (x)=\frac{e^{j x}-e^{-j x}}{2 j}$.
4. The impulse response function of a linear, shift-invariant system is:

$$
h(t)=\frac{\sin (\pi t)}{\pi t}
$$

and its input is:

$$
x(t)=\cos (4 \pi t)+\cos (\pi t / 2) .
$$

What is its output?
5. The impulse response function of a linear, shift-invariant system is:

$$
h(t)=e^{-\frac{\pi t^{2}}{2}}
$$

and its input is:

$$
x(t)=e^{j 2 \pi s_{0} t} .
$$

What is its output?
6. The sine Gabor function is the product of a sine and a Gaussian, $f(t)=$ $e^{-\pi t^{2}} \sin \left(2 \pi s_{0} t\right)$. Give an expression for $F(s)$, the Fourier transform of $f(t)$.
7. Prove that the sum of two Gaussian random variables with variances σ_{1}^{2} and σ_{2}^{2} is a Gaussian random variable with variance $\sigma_{1}^{2}+\sigma_{2}^{2}$.
8. The function, $f(t)$, is defined as:

$$
f(t)= \begin{cases}1 & \text { if }|a t-b| \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Give an expression for $F(s)$, the Fourier transform of $f(t)$.
9. The transfer function of a linear shift invariant system is $H(s)=1 / s$. The impulse response function, $h(t)$, is $\mathcal{F}^{-1}\{H(s)\}$. Give an expression for $g(t)$ where:

$$
g(t)=\int_{-\infty}^{\infty} e^{j 2 \pi s_{0} \tau} h(t-\tau) d \tau
$$

10. Compute the Fourier transform of $f(t)=-2 \pi t e^{-\pi t^{2}} \cos \left(2 \pi s_{0} t\right)$. Hint: What is $\frac{d\left(e^{-\pi t^{2}}\right)}{d t}$?
11. Prove the following statement: If $\mathcal{F}\{f\}(s)=F(s)$ then $\mathcal{F}\{F\}(s)=f(-s)$. Hint: If $\mathcal{F}\{f\}(s)=F(s)$ then $\mathcal{F}^{-1}\{F\}(t)=f(t)$.
12. Prove that $\mathcal{F}^{-1}\{\mathcal{F}\{f\}\}=f$
