CS 522: Digital Image Processing Homework 3 (Spring '07)

- 1. Characterize the following as linear, or non-linear, and as even, odd, or neither, and prove your characterization. In these functions, *x* is real, and *z* is complex.
 - (a) f(x) = 7x + 1
 - (b) $f(x) = x^2 x$
 - (c) $f(x) = e^{-x^2}$
 - (d) f(z) = 3z 2
 - (e) $f(z) = z z^*$
 - (f) $f(z) = \operatorname{Im}(z)$
 - (g) $f(z) = z^{\frac{1}{2}}$
- 2. The \int operator takes a function, f, as its argument and returns the antiderivative of the function: $f \xrightarrow{\int} \int f(t)dt$. Prove that the \int operator is:
 - (a) Linear.
 - (b) Shift-invariant.
- 3. Prove that $\sin(x) = \frac{e^{jx} e^{-jx}}{2j}$.
- 4. The impulse response function of a linear, shift-invariant system is:

$$h(t) = \frac{\sin(\pi t)}{\pi t}$$

and its input is:

$$x(t) = \cos(4\pi t) + \cos(\pi t/2).$$

What is its output?

5. The impulse response function of a linear, shift-invariant system is:

$$h(t) = e^{-\frac{\pi t^2}{2}}$$

and its input is:

$$x(t)=e^{j2\pi s_0 t}.$$

What is its output?

- 6. The sine Gabor function is the product of a sine and a Gaussian, $f(t) = e^{-\pi t^2} \sin(2\pi s_0 t)$. Give an expression for F(s), the Fourier transform of f(t).
- 7. Prove that the sum of two Gaussian random variables with variances σ_1^2 and σ_2^2 is a Gaussian random variable with variance $\sigma_1^2 + \sigma_2^2$.
- 8. The function, f(t), is defined as:

$$f(t) = \begin{cases} 1 & \text{if } |at - b| \le \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$$

Give an expression for F(s), the Fourier transform of f(t).

9. The transfer function of a linear shift invariant system is H(s) = 1/s. The impulse response function, h(t), is $\mathcal{F}^{-1}{H(s)}$. Give an expression for g(t) where:

$$g(t) = \int_{-\infty}^{\infty} e^{j2\pi s_0 \tau} h(t-\tau) d\tau.$$

- 10. Compute the Fourier transform of $f(t) = -2\pi t \ e^{-\pi t^2} \cos(2\pi s_0 t)$. Hint: What is $\frac{d(e^{-\pi t^2})}{dt}$?
- 11. Prove the following statement: If $\mathcal{F}{f}(s) = F(s)$ then $\mathcal{F}{F}(s) = f(-s)$. Hint: If $\mathcal{F}{f}(s) = F(s)$ then $\mathcal{F}^{-1}{F}(t) = f(t)$.
- 12. Prove that $\mathcal{F}^{-1}{\mathcal{F}{f}} = f$