1 Theory

1. Let $f(t) = e^{-\pi t^2}$, $f''(t) = 2\pi e^{-\pi t^2}(2\pi t^2 - 1)$, and $g(t) = at + b$. Prove or disprove the following:

 $\langle f'', g \rangle = 0$ for all a and b.

2. The n-th moment of Ψ is defined to be $M_n\{\Psi\} = \int_{-\infty}^{\infty} t^n \Psi(t) dt$. Let $f(t) = e^{-\pi t^2}$, $f'(t) = -2\pi t e^{-\pi t^2}$, and $f''(t) = 2\pi e^{-\pi t^2}(2\pi t^2 - 1)$. Prove the following:

 (a) $M_0\{f'\} = 0$.

 (b) $M_0\{f''\} = M_1\{f''\} = 0$.

3. The six vectors, $f_1 = \begin{bmatrix} \cos(\pi/3) & \sin(\pi/3) \end{bmatrix}^T$, $f_2 = \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) \end{bmatrix}^T$, $f_3 = \begin{bmatrix} -1 & 0 \end{bmatrix}^T$, $f_4 = \begin{bmatrix} -\cos(\pi/3) & -\sin(\pi/3) \end{bmatrix}^T$, $f_5 = \begin{bmatrix} -\cos(\pi/3) & \sin(\pi/3) \end{bmatrix}^T$, and $f_6 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ form a frame \mathcal{F} for \mathbb{R}^2. Draw the frame.

 (a) Give two representations for the vector, $x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$, in \mathcal{F}.

 (b) Prove that x has an infinite number of representations in \mathcal{F}.

 (c) Give a matrix which transforms any representation of a vector in \mathcal{F} into its representation in the standard basis for \mathbb{R}^2.

 (d) Give a matrix which transforms a representation of any vector in the standard basis for \mathbb{R}^2 into its representation in \mathcal{F}.

4. The continuous representation of the Haar highpass filter is

 $$h_1(t) = \frac{1}{2}[\delta(t + \Delta t) - \delta(t - \Delta t)].$$

The continuous representation of the Haar lowpass filter is

$$h_0(t) = \frac{1}{2}[\delta(t + \Delta t) + \delta(t - \Delta t)].$$
Prove that
\[H_0(s)H_0^*(s) + H_1(s)H_1^*(s) = 1 \]
where \(H_0(s) \) and \(H_1(s) \) are the Fourier transforms of \(h_0(t) \) and \(h_1(t) \).

5. The \(N+1 \) channel Haar transform matrix can be recursively defined as follows:
\[
H_N = \frac{1}{\sqrt{2}} \begin{bmatrix} I_{N-1} & 0 \\ 0 & H_{N-1} \end{bmatrix} \begin{bmatrix} U_N \\ L_N \end{bmatrix}
\]
where \(U_N \) convolves a length \(2^N \) signal with the Haar highpass filter followed by downsampling, \(L_N \) convolves a length \(2^N \) signal with the Haar lowpass filter followed by downsampling, \(I_N \) is the identity matrix of size \(2^N \times 2^N \) and
\[
H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} U_1 \\ L_1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.
\]
(a) Using the above definitions, derive expressions for \(H_3 \) and \(H_3^{-1} \).
(b) Compute the Haar transform of the vector \(\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}^T \).

2 Practice

1. Write a function \textit{reduce} which takes a square image, \textit{im}, of size \(2^k \) for integer \(k \) as input, and convolves the rows and columns of \(\textit{im} \) with the kernel,
Figure 2: Laplacian pyramid transform of the Mona Lisa.

\[\frac{1}{20} \begin{bmatrix} 1 & 5 & 8 & 5 & 1 \end{bmatrix}^T, \] and then downsamples it. Demonstrate your function on an image of your choice.

2. Write a function `project` which takes a square image, \(im \), of size \(2^k \) for integer \(k \) as input, upsamples it and then convolves the rows and columns of the upsampled image with the kernel, \(\frac{1}{10} \begin{bmatrix} 1 & 5 & 8 & 5 & 1 \end{bmatrix}^T \). Demonstrate your function on an image of your choice.

3. Write a function `laplacian-pyramid` which takes a square image, \(im \), of size \(2^k \) for integer \(k \) as input, and returns a list of \(k \) images representing the \(k \) levels of a two-dimensional Laplacian pyramid transform of \(im \).

4. Write a function `inverse-laplacian-pyramid` which takes a list, \(ls \), of \(k \) images representing the \(k \) levels of a two-dimensional Laplacian pyramid transform of a square image of size \(2^k \) for integer \(k \) as input, and returns the reconstructed image. Demonstrate your function’s ability to invert a Laplacian pyramid you compute with `laplacian-pyramid` for an image of your choice.

5. Write a function `display-laplacian-pyramid` which takes a list, \(ls \), of \(k \) images representing the \(k \) levels of a two-dimensional Laplacian pyramid transform of an image of size \(2^k \) for integer \(k \) as input, and returns an image depicting the Laplacian pyramid using the recursive scheme shown in Figure 2. Demonstrate your function on an image of your choice. Note: The images representing the Laplacian pyramid levels must each be normalized.
to the range [0-255] with grey level 0 mapped to grey level 128 prior to constructing the display.

6. Write a function \textit{daubechies4} which takes a square image, \textit{im}, of size 2^k for integer \textit{k} as input, and returns a list of length four representing the two-dimensional \textit{x} - \textit{y} separable Daubechies 4 wavelet transform of \textit{im}. The last three elements of the list are the level 1 wavelet subbands and the first element is (itself) a list of length four (recursively) representing levels 2 through \textit{k} of the wavelet transform.

7. Write a function \textit{inverse-daubechies4} which takes a list of length four representing a two-dimensional \textit{x} - \textit{y} separable Daubechies 4 wavelet transform of a square image, \textit{im}, of size 2^k for integer \textit{k} as input, and returns the reconstructed image. Demonstrate your function’s ability to invert a wavelet transform you compute with \textit{daubechies4} for an image of your choice.

8. Write a function \textit{display-wavelet-transform} which takes a list of length four representing a two-dimensional \textit{x} - \textit{y} separable Daubechies 4 wavelet transform of a square image, \textit{im}, of size 2^k for integer \textit{k} as input, and returns an image depicting the wavelet transform using the recursive scheme shown in Figure 3. Demonstrate your function on an image of your choice. Note: The images representing the wavelet subbands must each be normalized to the range [0-255] with grey level 0 mapped to grey level 128 prior to constructing the display.

9. Write a function \textit{denoise-color-image} which takes a color image, \textit{cim}, as input and returns a denoised color-image computed by:

 - Converting \textit{cim} to HSI.
 - Computing the Daubechies 4 wavelet transform of the saturation (S) and intensity (I) components.
 - Soft-thresholding the the S and I wavelet subbands.
 - Computing the inverse Daubechies 4 wavelet transform.
 - Converting the HSI representation back to RGB.

10. Find a noisy color image on the internet, \textit{i.e.}, an image which has been degraded by aliasing from downsampling or contains visible JPEG blocking, film grain, or other additive noise. If you cannot find a suitable image, then start with a high quality color image and degrade it yourself, \textit{e.g.}, using \textit{xv}.

Figure 3: (a) Bill Clinton. (b) Recursively displayed two-dimensional $x − y$ separable Daubechies 4 wavelet transform.

11. Use `denoise-color-image` to denoise your image. Use a threshold for shrinkage which you judge to be optimum and one which is too large. Show your results for both thresholds.