
Space-Frequency Atoms
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Figure 1: Space-frequency atoms.



Windowed Fourier Transform
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Figure 2: A Gabor function.
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Figure 3: A second Gabor function.



Windowed Fourier Transform (contd.)

• Analysis

F(u,b) = 〈w(x−b)e j2πux, f 〉
=

∫ ∞

−∞
f (x)w(x−b)e− j2πux dx

• Synthesis

f (x) =

∫ ∞

−∞

∫ ∞

−∞
F(u,b)w(x−b)e j2πux du db



What is a Wavelet?

All basis functions (daughter wavelets) are gen-
erated bytranslation anddilation of a mother
wavelet:

Ψa,b(x) =
1√
a

Ψ
(

x−b
a

)

whena < 1 it shrinks the wavelet. The
√

a fac-
tor keeps the norm constant:
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dx

=
√

a|| f (x)||.



What is a Wavelet? (contd.)

The mother wavelet,Ψ, must satisfy theadmis-
sibility criterion:

CΨ =
∫ ∞

−∞

|Ψ̂(s)|2
|s| ds < ∞

whereΨ̂ is the Fourier transform ofΨ. This
means that:

• |Ψ̂(s)|2 decays faster than 1/|s|
• Ψ̂(0) = 0.



What is a Wavelet? (contd.)
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Figure 4: A Morlet wavelet.
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Figure 5: A second Morlet wavelet.



Vanishing Moments

• Then-th moment ofΨ is defined to be:

Mn{Ψ}=
∫ ∞

−∞
tn Ψ(t)dt.

• If M0{Ψ}= 0 thenΨ has onevanishing mo-
ment.

• Because

M0{Ψ}=
∫ ∞

−∞
Ψ(x)dx = Ψ̂(0) = 0

all wavelets have at least one vanishing mo-
ment.

• If M0{Ψ} = M1{Ψ} = 0, thenΨ has two
vanishing moments, etc.



Vanishing Moments (contd.)

• If Ψ has one vanishing moment, then

〈Ψa,b, a0 〉= 0.

• If Ψ has two vanishing moments, then

〈Ψa,b, a1x+a0〉= 0.

• If Ψ hasn vanishing moments, then

〈Ψa,b, an−1xn−1+ · · ·+a1x+a0 〉= 0,

i.e., the daughter wavelets are orthogonal to
any polynomial of degree less thann.

• Vanishing moments are the reason why smooth
signals have sparse representations in wavelet
bases.



Continuous Wavelet Transform

• Analysis

F(a,b) = 〈Ψa,b, f 〉
=

∫ ∞

−∞
f (x)Ψa,b(x) dx

• Synthesis

f (x) =
1

CΨ

∫ ∞

0

1
a2

∫ ∞

−∞
F(a,b)Ψa,b(x) db da

where

CΨ =
∫ ∞

−∞

|Ψ̂(s)|2
|s| ds



Continuous Wavelet Transform (Example)

Figure 6: Continuous wavelet transform of time-series using derivative of Gaussian wavelet (from
Vialar, T.,Complex and Chaotic Nonlinear Dynamics, Springer, 2009).



Two Dimensional Continuous Wavelet Transform

• Analysis

F(a,bx,by) = 〈Ψa,bx,by, f 〉
=

∫ ∞

−∞

∫ ∞

−∞
f (x,y)Ψa,bx,by(x,y) dx dy

• Synthesis

f (x,y) =
1

CΨ

∫ ∞

0

1
a3

∫ ∞

−∞

∫ ∞

−∞
F(a,bx,by)Ψa,bx,by(x,y) dbx dby da

where

Ψa,bx,by(x,y) =
1
|a|Ψ

(
x−bx

a
,
y−by

a

)

and

CΨ =
∫ ∞

−∞

∫ ∞

−∞

|Ψ̂(u,v)|2√
|u|2+ |v|2

dudv



Wavelet Transform as Convolution

Recall that the relationship between daughter
waveletΨa,b and mother waveletΨ involves both
translation and dilation:

Ψa,b(x) =
1√
a

Ψ
(

x−b
a

)
.

Let’s define a functionΨa to represent a daugh-
ter which is dilated by a factora but is not trans-
lated:

Ψa(x−b) = Ψa,b(x) =
1√
a

Ψ
(

x−b
a

)

and a functionΨa(x) to represent a reflected
and conjugated instance ofΨa:

Ψa(x) = Ψa(−x).



Wavelet Transform as Convolution (contd.)

UsingΨa andΨa the forward and inverse con-
tinuous wavelet transforms can be expressed as
follows:

• Analysis

F(a,b) = 〈Ψa,b, f 〉
=

∫ ∞

−∞
f (x)Ψa(x−b) dx

=
∫ ∞

−∞
f (x)Ψa(b− x) dx

= { f ∗Ψa}(b)

• Synthesis

f (x) =
1

CΨ

∫ ∞

0

1
a2

∫ ∞

−∞
〈Ψa,b, f 〉Ψa,b(x) db da

=
1

CΨ

∫ ∞

0

1
a2

∫ ∞

−∞
{ f ∗Ψa}(b)Ψa(x−b) db da

=
1

CΨ

∫ ∞

0

1
a2
{ f ∗Ψa ∗Ψa}(x) da



Wavelet Series Transform

Is it possible to replace the integrals overa and
b in the synthesis formula with sums? Can we
represent anyf in a Hilbert space,H , using a
discrete set,S, of wavelet coefficients? If for all
f ∈ H there existA > 0 andB < ∞ such that

A|| f ||2 ≤ ∑
(a,b)∈S

|〈Ψa,b, f 〉|2 ≤ B|| f ||2

then Ψa,b for (a,b) ∈ S form a frame forH .
Furthermore, there exists a set of functionsΨ̃a,b

for (a,b) ∈ S which form adual frame for H :

1
B
|| f ||2 ≤ ∑

(a,b)∈S

|〈Ψ̃a,b, f 〉|2 ≤ 1
A
|| f ||2.



Wavelet Series Transform (contd.)

The wavelets,Ψa,b, are used for analysis:

〈Ψa,b, f 〉=
∫ ∞

−∞
f (x)Ψa,b(x) dx

and the wavelets,̃Ψa,b, are used for synthesis:

f (x) = ∑
(a,b)∈S

〈Ψa,b, f 〉Ψ̃a,b(x).



Self-inverting Wavelet Series

If A = B, then

∑
(a,b)∈S

|〈Ψa,b, f 〉|2 = A|| f ||2

and theΨa,b for (a,b) ∈ S form a tight-frame
for H , in which case

f (x) =
1
A ∑

(a,b)∈S

〈Ψa,b, f 〉Ψa,b(x).

Such frames are said to beself-inverting be-
causeΨa,b(x) = 1

AΨ̃a,b(x).



Redundancy

Recall that for a tight-frame

A =
∑(a,b)∈S |〈Ψa,b, f 〉|2

|| f ||2 .

Assuming that||Ψ||= 1, thenA provides a mea-
sure of the redundancy of the expansion, i.e.,
the degree ofovercompleteness. If A = 1 there
is no redundancy, and the expansion isorthonor-
mal. How can one find wavelet series trans-
forms with no redundancy?



Dyadic Sampling

A sampling pattern isdyadic if the daughter
wavelets are generated by dilating the mother
wavelet by 2j and translating it byk2j:

Ψ j,k(x) =
1√
2j

Ψ
(

x− k2j

2j

)

Dyadic sampling is optimal because the space
variable is sampled at the Nyquist rate for any
given frequency.



Dyadic Sampling (contd.)
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Figure 7: Dyadic sampling pattern.


