Conditional Distributions

A conditional distribution is the ratio of a joint distribution and a marginal distribution. When the value of random variable X is conditioned on the value of random variable Y:

$$p_{X|Y}(x \mid y) = \frac{p_{XY}(x, y)}{p_Y(y)}.$$

This can be generalized so that the values of N random variables $X_1...X_N$ are conditioned on the values of M random variables $Y_1...Y_M$:

$$p_{X_1...X_N|Y_1...Y_M}(x_1...x_N \mid y_1...y_M) = \frac{p_{X_1...X_N,Y_1...Y_M}(x_1...x_N, y_1...y_M)}{p_{Y_1...Y_M}(y_1...y_M)}.$$
Higher Order Markov Processes

Let S be a set of states:

$$S = \{1, 2, 3...N\}$$

and let $i, j, k... \in S$. A random process is an order one Markov process iff:

$$p_{t|t-1,t-2...-\infty}(i | j, k...) = p_{t|t-1}(i | j).$$

The probability that the Markov process is in state i at time t is given by the following update formula:

$$p_t(i) = \sum_{j=1}^{N} p_{t|t-1}(i | j)p_{t-1}(j).$$
Higher Order Markov Processes (contd.)

Let S be a set of states:

$$S = \{1, 2, 3...N\}$$

and let $i, j, k... \in S$. A random process is an order two Markov process iff:

$$p_{t|t-1,t-2...-\infty}(i | j, k...) = p_{t|t-1,t-2}(i | j, k).$$

The probability that the Markov process is in state i at time t is given by the following update formula:

$$p_t(i) = \sum_{j=1}^{N} \sum_{k=1}^{N} p_{t|t-1,t-2}(i | j, k) p_{t-1,t-2}(j, k).$$
Higher-Order Markov Processes (contd.)

A Markov process of order two can be thought of as a mapping between two joint distributions. Both of these joint distributions give the probability that the process visits two states in two successive times:

\[p_{t,t-1}(i, j) = \sum_{k=1}^{N} p_{t|t-1,t-2}(i | j, k) p_{t-1,t-2}(j, k). \]

The state \(i \) at time \(t \) is a marginal distribution (produced by summing over all possible states \(j \) at time \(t - 1 \)):

\[p_t(i) = \sum_{j=1}^{N} p_{t,t-1}(i, j). \]
Higher Order Markov Processes (contd.)

It follows that a Markov process of order two, with states, S:

\[S = \{1, 2, 3 \ldots N\} \]

can be reduced to a Markov process of order one, with states, $S' = S \times S$:

\[S' = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle \ldots \langle N, N \rangle\} \]

and transition probability matrix:

\[p_{t|t-1}'(\langle i, j \rangle | \langle j, k \rangle) = p_{t|t-1,t-2}(i | j, k) \]

so that:

\[p_{t}'(\langle i, j \rangle) = \sum_{k=1}^{N} p_{t|t-1}'(\langle i, j \rangle | \langle j, k \rangle)p_{t-1}'(\langle j, k \rangle) \]

and

\[p_{t}(i) = \sum_{j=1}^{N} p_{t}'(\langle i, j \rangle). \]
Information Source with Memory

An information source with memory generates messages using a source alphabet of length, M. If the source is modeled as a Markov process of order one, then the entropy of a message of length N is:

$$H_1 = H_0 + (N - 1)H_{t|t-1}$$

where

$$H_0 = -\sum_{i=1}^{M} p_t(i) \log p_t(i)$$

is the entropy of the first symbol and

$$H_{t|t-1} = -\sum_{i=1}^{M} \sum_{j=1}^{M} p_{t,t-1}(i,j) \log p_{t|t-1}(i|j)$$

is the entropy of each of the remaining symbols.
Figure 1: Second-order two-state Markov process and reduction to equivalent first-order Markov process.
Example One

On avg., how much information is provided by each character in a random string of zeros and ones? The distribution for the t-th character is:

\[p_t(0) = 0.5 \]
\[p_t(1) = 0.5 \]

\[H_t = -0.5 \log(0.5) - 0.5 \log(0.5) = 1 \text{ bit}. \]

Each symbol delivers 1 bit of information on avg. in the memoryless case.
Example Two

Now let’s consider a string where the first character is chosen at random, but the remaining characters follow a simple pattern:

0101...01 or 1010...10

The distribution for the \(t \)-th character is:

\[
p_t(0) = 0.5
\]

\[
p_t(1) = 0.5
\]

\[
H_t = -0.5 \log(0.5) - 0.5 \log(0.5) = 1 \text{ bit}
\]

The joint distribution is:

\[
\begin{bmatrix}
p_{t,t-1}(0,0) & p_{t,t-1}(0,1) \\
p_{t,t-1}(1,0) & p_{t,t-1}(1,1)
\end{bmatrix} =
\begin{bmatrix}
0 & 0.5 \\
0.5 & 0
\end{bmatrix}
\]
Example Two (contd.)

The conditional distribution is:

\[p_{t|t-1}(i|j) = \frac{p_{t,t-1}(i,j)}{p_{t-1}(j)} \]

\[
\begin{bmatrix}
 p_{t|t-1}(0|0) & p_{t|t-1}(0|1) \\
p_{t|t-1}(1|0) & p_{t|t-1}(1|1)
\end{bmatrix}
= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

and the conditional entropy per character is:

\[
H_{t|t-1} = -\sum_{i=0}^{1} \sum_{j=0}^{1} p_{t,t-1}(i,j) \log p_{t|t-1}(i|j)
= -0.5 \log(1.0) + 0.5 \log(1.0)
= 0 \text{ bits.}
\]

This is less than in the memoryless case.
Information Source with Memory (contd.)

If the source is modeled as a Markov process of order two, then the entropy of a message of length \(N \) is:

\[
H_2 = H_0 + H_{t|t-1} + (N - 2)H_{t|t-1,t-2}
\]

where \(H_0 \) and \(H_{t|t-1} \) are the entropies of the first and second symbols and

\[
H_{t|t-1,t-2} =
- \sum_{i=1}^{M} \sum_{j=1}^{M} \sum_{k=1}^{M} p_{t,t-1,t-2}(i, j, k) \log p_{t|t-1,t-2}(i | j, k)
\]

is the entropy of each the remaining symbols.
Information Limit

Let H_0 be the entropy computed under the assumption that an information source is memoryless, and let H_1 be the entropy computed under the assumption that the source is a Markov process of order one, and H_2 be the entropy computed under the assumption that the source is a Markov process of order two, etc. Then

$$H_0 \geq H_1 \geq H_2 \geq \ldots \geq \lim_{k \to \infty} H_k.$$
Theorem The initial distribution and the limiting distribution of every irreducible, aperiodic Markov process have zero mutual information.

Proof Let I and L be discrete r.v.'s corresponding to the initial state and limiting state, then

$$p_{L|I}(i | j) = \lim_{n \to \infty} (P^n)_{ij}$$

where P is the transition matrix. Because $\rho(P) = 1$ for all stochastic matrices and the process is aperiodic and irreducible,

$$\lim_{n \to \infty} P^n = x_1 y_1^T$$

where $x_1 = Px_1$ and $y_1^T = y_1^T P$ by Perron’s Theorem.
Loss of Memory (contd.)

Now, because \(y_1^T = [1 \ 1 \ 1 \ \ldots \ 1] \) for all stochastic matrices:

\[
p_{L|I}(i \ | \ j) = (x_1 y_1^T)_{ij}
= \left(\left[\begin{array}{c} x_1 \\ \vdots \\ x_1 \end{array} \right] \right)_{ij}
= (x_1)_i
= p_L(i).
\]

It follows that \(L \) and \(I \) are statistically independent. Consequently \(I_{LI} \) equals zero.