## Change of Basis

Consider a linear transform, $\mathbf{P}_{\mathcal{B}}$, and its inverse, $\mathbf{P}_{\mathcal{B}}^{-1}$, which map a vector back and forth between its representation in the standard basis and its representation in the basis, $\mathcal{B}$ :

$$
\mathbf{u} \underset{\mathbf{P}_{\mathcal{B}}^{-1}}{\stackrel{\mathbf{P}_{\mathcal{B}}}{\rightleftarrows}}[\mathbf{u}]_{\mathfrak{B}} .
$$

## Change of Basis (contd).

Let $\mathcal{B}$ consist of $N$ basis vectors, $\mathbf{b}_{1} \ldots \mathbf{b}_{N}$. Since $[\mathbf{u}]_{\mathcal{B}}$ is the representation of $\mathbf{u}$ in $\mathcal{B}$, it follows that
$\mathbf{u}=\left([\mathbf{u}]_{\mathcal{B}}\right)_{1} \mathbf{b}_{1}+\left([\mathbf{u}]_{\mathcal{B}}\right)_{2} \mathbf{b}_{2}+\ldots\left([\mathbf{u}]_{\mathcal{B}}\right)_{N} \mathbf{b}_{N}$.
But this is just the matrix vector product

$$
\mathbf{u}=\mathbf{B}[\mathbf{u}]_{\mathcal{B}}
$$

where

$$
\mathbf{B}=\left[\mathbf{b}_{1}\left|\mathbf{b}_{2}\right| \ldots \mid \mathbf{b}_{N}\right] .
$$

We see that $\mathbf{P}_{\mathcal{B}}=\mathbf{B}^{-1}$ and $\mathbf{P}_{\mathcal{B}}^{-1}=\mathbf{B}$.

Similarity Transforms
Now consider a linear transformation represented in the standard basis by the matrix A. We seek $[\mathbf{A}]_{\mathcal{B}}$, i.e., the representation of the corresponding linear transformation in the basis $\mathcal{B}$ :

$$
\begin{array}{ccc}
\mathbf{u} & \xrightarrow{\mathbf{A}} & \mathbf{A} \mathbf{u} \\
\uparrow \mathbf{B} & & \downarrow \mathbf{B}^{-1} \\
{[\mathbf{u}]_{\mathcal{B}}} \\
& \xrightarrow{[\mathbf{A}]_{\mathcal{B}}} & {[\mathbf{A} \mathbf{u}]_{\mathcal{B}}}
\end{array}
$$

The matrix we seek maps $[\mathbf{u}]_{\mathcal{B}}$ into $[\mathbf{A u}]_{\mathcal{B}}$. From the above diagram, we see that this matrix is the composition of $\mathbf{B}, \mathbf{A}$, and $\mathbf{B}^{-1}$ :

$$
[\mathbf{A}]_{\mathcal{B}}=\mathbf{B}^{-1} \mathbf{A B}
$$

We say that $\mathbf{A}$ and $[\mathbf{A}]_{\mathcal{B}}$ are related by a similarity transform.

Diag. of Symmetric Matrices
Because of linearity, one might expect that a transformation will have an especially simple representation in the basis of its eigenvectors, $x$. Let $\mathbf{A}$ be its representation in the standard basis and let the columns of $\mathbf{X}$ be the eigenvectors of $\mathbf{A}$. Then $\mathbf{X}$ and $\mathbf{X}^{\mathrm{T}}=\mathbf{X}^{-1}$ take us back and forth between the standard basis and $x$ :

$$
\mathbf{u} \underset{\mathbf{X}}{\stackrel{\mathbf{X}^{\mathrm{T}}}{\rightleftarrows}}[\mathbf{u}]_{x}
$$

## Diag. of Symmetric Matrices (contd.)

The matrix we seek maps $[\mathbf{u}]_{X}$ into $[\mathbf{A u}]_{X}$ :

$$
\begin{array}{ccc}
\mathbf{u} \xrightarrow{\mathbf{A}} & \mathbf{A u} \\
\uparrow \mathbf{X} & \\
& \downarrow \mathbf{X}^{\mathrm{T}} \\
{[\mathbf{u}]_{x} \xrightarrow{[\mathbf{A}]_{x}}} & {[\mathbf{A u}]_{x}}
\end{array}
$$

From the above diagram, we see that this matrix is the composition of $\mathbf{X}, \mathbf{A}$, and $\mathbf{X}^{\mathrm{T}}$ :

$$
\Lambda=\mathbf{X}^{\mathrm{T}} \mathbf{A} \mathbf{X}
$$

We observe that $\Lambda$ is diagonal with $\Lambda_{i i}=$ $\lambda_{i}$, the eigenvalue of $\mathbf{A}$ associated with eigenvector, $\mathbf{x}_{i}$.

## Spectral Thm. for Sym. Matrices

Any symmetric $N \times N$ matrix, A, with $N$ distinct eigenvalues, can be factored as follows:

$$
\mathbf{A}=\mathbf{X} \Lambda \mathbf{X}^{\mathrm{T}}
$$

where $\Lambda$ is $N \times N$ and diagonal, $\mathbf{X}$ and $\mathbf{X}^{\mathrm{T}}$ are $N \times N$ matrices, and the $i$-th column of $\mathbf{X}$ (equal to the $i$-th row of $\mathbf{X}^{\mathrm{T}}$ ) is an eigenvector of $\mathbf{A}$ :

$$
\lambda_{i} \mathbf{x}_{i}=\mathbf{A} \mathbf{x}_{i}
$$

with eigenvalue $\Lambda_{i i}=\lambda_{i}$. Note that $\mathbf{x}_{i}$ is orthogonal to $\mathbf{x}_{j}$ when $i \neq j$ :

$$
\left(\mathbf{X} \mathbf{X}^{\mathrm{T}}\right)_{i j}=\delta_{i j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { otherwise }
\end{array}\right.
$$

In other words, $\mathbf{X} \mathbf{X}^{\mathrm{T}}=\mathbf{I}$. Consequently,

$$
\mathbf{X}^{\mathrm{T}}=\mathbf{X}^{-1}
$$

Spectral Thm. for Sym. Matrices (contd).
Using the definition of matrix product and the fact that $\Lambda$ is diagonal, we can write $\mathbf{A}=\mathbf{X} \wedge \mathbf{X}^{\mathrm{T}}$ as

$$
(\mathbf{A})_{i j}=\sum_{k=1}^{N}(\mathbf{X})_{i k} \Lambda_{k k}\left(\mathbf{X}^{\mathrm{T}}\right)_{k j} .
$$

Since $\mathbf{X}=\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \ldots \mid \mathbf{x}_{N}\right]$ and $\Lambda_{k k}=\lambda_{k}$

$$
\begin{aligned}
(\mathbf{A})_{i j} & =\sum_{k=1}^{N}\left(\mathbf{x}_{k}\right)_{i} \lambda_{k}\left(\mathbf{x}_{k}\right)_{j} \\
& =\sum_{k=1}^{N}\left(\lambda_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{T}}\right)_{i j} \\
\mathbf{A} & =\sum_{k=1}^{N} \lambda_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{T}}
\end{aligned}
$$

where $\lambda_{k} \mathbf{x}_{k}=\mathbf{A} \mathbf{x}_{k}$.

Spectral Thm. for Sym. Matrices (contd).
The spectral factorization of $\mathbf{A}$ is:
$\mathbf{A}=\lambda_{1} \mathbf{x}_{1} \mathbf{x}_{1}^{\mathrm{T}}+\lambda_{2} \mathbf{x}_{2} \mathbf{x}_{2}^{\mathrm{T}}+\cdots+\lambda_{N} \mathbf{x}_{N} \mathbf{x}_{N}^{\mathrm{T}}$.
Note that each $\lambda_{n} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}}$ is a rank one matrix. Let $\mathbf{A}_{i}=\lambda_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}$. Now, because $\mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{i}=1$ :

$$
\begin{aligned}
\lambda_{i} \mathbf{x}_{i} & =\left(\lambda_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}\right) \mathbf{x}_{i} \\
& =\mathbf{A}_{i} \mathbf{x}_{i}
\end{aligned}
$$

i.e., $\mathbf{x}_{i}$ is the only eigenvector of $\mathbf{A}_{i}$ and its only eigenvalue is $\lambda_{i}$.

## Diag. of Non-symmetric Matrices

The situation is more complex when the transformation is represented by a nonsymmetric matrix, $\mathbf{P}$. Let the columns of $\mathbf{X}$ be $\mathbf{P}$ 's right eigenvectors and the rows of $\mathbf{Y}^{\mathrm{T}}$ be its left eigenvectors. Then $\mathbf{X}$ and $\mathbf{Y}^{\mathrm{T}}=\mathbf{X}^{-1}$ take us back and forth between the standard basis and $x$ :

$$
\mathbf{u} \underset{\mathbf{X}}{\stackrel{\mathbf{Y}^{\mathrm{T}}}{\rightleftarrows}}[\mathbf{u}]_{x}
$$

## Diag. of Non-symmetric Matrices (contd.)

The matrix we seek maps $[\mathbf{u}]_{X}$ into $[\mathbf{P u}]_{X}$ :

$$
\begin{array}{ccc}
\mathbf{u} & \xrightarrow{\mathbf{P}} & \mathbf{P u} \\
\uparrow \mathbf{X} & & \downarrow \mathbf{Y}^{\mathrm{T}} \\
{[\mathbf{u}]_{x}} & \xrightarrow{\Lambda} & {[\mathbf{P} \mathbf{u}]_{x}}
\end{array}
$$

From the above diagram, we see that this matrix is the composition of $\mathbf{X}, \mathbf{P}$, and $\mathbf{Y}^{\mathrm{T}}$ :

$$
\Lambda=\mathbf{Y}^{\mathrm{T}} \mathbf{P X}
$$

We observe that $\Lambda$ is diagonal with $\Lambda_{i i}=$ $\lambda_{i}$, the eigenvalue of $\mathbf{P}$ associated with right eigenvector, $\mathbf{x}_{i}$, and left eigenvector, $\mathbf{y}_{i}$.

## Spectral Theorem

Any $N \times N$ matrix, $\mathbf{P}$, with $N$ distinct eigenvalues, can be factored as follows:

$$
\mathbf{P}=\mathbf{X} \Lambda \mathbf{Y}^{\mathrm{T}}
$$

where $\Lambda$ is $N \times N$ and diagonal, $\mathbf{X}$ and $\mathbf{Y}^{\mathrm{T}}$ are $N \times N$ matrices, and the $i$-th column of $\mathbf{X}$ is a right eigenvector of $\mathbf{P}$ :

$$
\lambda_{i} \mathbf{x}_{i}=\mathbf{P} \mathbf{x}_{i}
$$

with eigenvalue $\Lambda_{i i}=\lambda_{i}$ and the $i$-th row of $\mathbf{Y}^{\mathrm{T}}$ is a left eigenvector of $\mathbf{P}$ :

$$
\lambda_{i} \mathbf{y}_{i}^{\mathrm{T}}=\mathbf{y}_{i}^{\mathrm{T}} \mathbf{P}
$$

with the same eigenvalue.

Spectral Theorem (contd.)
Note that $\mathbf{x}_{i}$ is orthogonal to $\mathbf{y}_{j}$ when $i \neq j$ :

$$
\left(\mathbf{X} \mathbf{Y}^{\mathrm{T}}\right)_{i j}=\delta_{i j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { otherwise }
\end{array}\right.
$$

In other words, $\mathbf{X} Y^{T}=\mathbf{I}$. Consequently,

$$
\mathbf{Y}^{\mathrm{T}}=\mathbf{X}^{-1}
$$

## Spectral Theorem (contd).

The spectral factorization of $\mathbf{P}$ is:

$$
\mathbf{P}=\lambda_{1} \mathbf{x}_{1} \mathbf{y}_{1}^{\mathrm{T}}+\lambda_{2} \mathbf{x}_{2} \mathbf{y}_{2}^{\mathrm{T}}+\cdots+\lambda_{N} \mathbf{x}_{N} \mathbf{y}_{N}^{\mathrm{T}} .
$$

Note that each $\lambda_{n} \mathbf{x}_{n} \mathbf{y}_{n}^{\mathrm{T}}$ is a rank one matrix. Let $\mathbf{P}_{i}=\lambda_{i} \mathbf{x}_{i} \mathbf{y}_{i}^{\mathrm{T}}$. Now, because $\mathbf{y}_{i}^{\mathrm{T}} \mathbf{x}_{i}=1$ :

$$
\begin{aligned}
\lambda_{i} \mathbf{x}_{i} & =\left(\lambda_{i} \mathbf{x}_{i} \mathbf{y}_{i}^{\mathrm{T}}\right) \mathbf{x}_{i} \\
& =\mathbf{P}_{i} \mathbf{x}_{i}
\end{aligned}
$$

and

$$
\begin{aligned}
\lambda_{i} \mathbf{y}_{i}^{\mathrm{T}} & =\mathbf{y}_{i}^{\mathrm{T}}\left(\lambda_{i} \mathbf{x}_{i} \mathbf{y}_{i}^{\mathrm{T}}\right) \\
& =\mathbf{y}_{i}^{\mathrm{T}} \mathbf{P}_{i}
\end{aligned}
$$

i.e., $\mathbf{x}_{i}$ and $\mathbf{y}_{i}$ are the sole right and left eigenvectors of $\mathbf{P}_{i}$. The only eigenvalue is $\lambda_{i}$.

## Stochastic Matrices

If $\mathbf{P}$ is stochastic, then

$$
1=\sum_{i} P_{i j}
$$

Let $\mathbf{y}^{\mathrm{T}}=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]$. It follows that
$\left(\mathbf{y}^{\mathrm{T}}\right)_{j}=\sum_{i}\left(\mathbf{y}^{\mathrm{T}}\right)_{i} P_{i j}$.
Consequently, $\mathbf{y}^{\mathrm{T}}$ is a left eigenvector with unit eigenvalue of every stochastic matrix:

$$
\mathbf{y}^{\mathrm{T}}=\mathbf{y}^{\mathrm{T}} \mathbf{P}
$$

## Stochastic Matrices (contd.)

What is the representation of an arbitrary distribution, $\mathbf{z}$, in the basis of eigenvectors of an arbitrary stochastic matrix, $\mathbf{P}$ ?

$$
\mathbf{z}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{1}+\cdots+c_{N} \mathbf{x}_{N}=\mathbf{X} \mathbf{c}
$$

Solving for $\mathbf{c}$ :

$$
\mathbf{c}=\mathbf{X}^{-1} \mathbf{z}=\mathbf{Y}^{\mathrm{T}} \mathbf{z}
$$

Since $\mathbf{y}_{1}^{\mathrm{T}}=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]$, it follows that:

$$
c_{1}=\sum_{j} Y_{1 j}^{\mathrm{T}} z_{j}=\sum_{j} z_{j}=1
$$

which is independent of the specific $\mathbf{z}$ and $\mathbf{P}$ !

