Change of Basis

Consider a linear transform, $\mathbf{P}_{\mathcal{B}}$, and its inverse, $\mathbf{P}_{\mathcal{B}}^{-1}$, which map a vector back and forth between its representation in the standard basis and its representation in the basis, \mathcal{B} :

$$\mathbf{u} \stackrel{\mathbf{P}_{\mathcal{B}}}{\overset{\longrightarrow}{\leftarrow}} \left[\mathbf{u}\right]_{\mathcal{B}} \\ \mathbf{P}_{\mathcal{B}}^{-1}$$

Change of Basis (contd).

Let \mathcal{B} consist of N basis vectors, $\mathbf{b}_1 \dots \mathbf{b}_N$. Since $[\mathbf{u}]_{\mathcal{B}}$ is the representation of \mathbf{u} in \mathcal{B} , it follows that

$$\mathbf{u} = ([\mathbf{u}]_{\mathcal{B}})_1 \mathbf{b}_1 + ([\mathbf{u}]_{\mathcal{B}})_2 \mathbf{b}_2 + \dots ([\mathbf{u}]_{\mathcal{B}})_N \mathbf{b}_N.$$

But this is just the matrix vector product

$$\mathbf{u}=\mathbf{B}\left[\mathbf{u}\right]_{\mathcal{B}}$$

where

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}_1 | \mathbf{b}_2 | \dots | \mathbf{b}_N \end{bmatrix}.$$

We see that $\mathbf{P}_{\mathcal{B}} = \mathbf{B}^{-1}$ and $\mathbf{P}_{\mathcal{B}}^{-1} = \mathbf{B}$.

Similarity Transforms

Now consider a linear transformation represented in the standard basis by the matrix **A**. We seek $[\mathbf{A}]_{\mathcal{B}}$, *i.e.*, the representation of the corresponding linear transformation in the basis \mathcal{B} :

$$\begin{array}{ccc} \mathbf{u} & \stackrel{\mathbf{A}}{\longrightarrow} & \mathbf{A}\mathbf{u} \\ \uparrow \mathbf{B} & & \downarrow \mathbf{B}^{-1} \\ \left[\mathbf{u}\right]_{\mathcal{B}} & \stackrel{[\mathbf{A}]_{\mathcal{B}}}{\longrightarrow} & \left[\mathbf{A}\mathbf{u}\right]_{\mathcal{B}} \end{array}$$

The matrix we seek maps $[\mathbf{u}]_{\mathcal{B}}$ into $[\mathbf{A}\mathbf{u}]_{\mathcal{B}}$. From the above diagram, we see that this matrix is the composition of **B**, **A**, and \mathbf{B}^{-1} :

$$\left[\mathbf{A}\right]_{\mathcal{B}} = \mathbf{B}^{-1}\mathbf{A}\mathbf{B}.$$

We say that **A** and $[\mathbf{A}]_{\mathcal{B}}$ are related by a *similarity transform*.

Diag. of Symmetric Matrices

Because of linearity, one might expect that a transformation will have an especially simple representation in the basis of its eigenvectors, x. Let **A** be its representation in the standard basis and let the columns of **X** be the eigenvectors of **A**. Then **X** and $\mathbf{X}^{\mathrm{T}} = \mathbf{X}^{-1}$ take us back and forth between the standard basis and x:

$$\mathbf{u} \stackrel{\mathbf{X}^{\mathrm{T}}}{\stackrel{\longrightarrow}{\longleftarrow}} \left[\mathbf{u}\right]_{x} \cdot \mathbf{X}$$

The matrix we seek maps $[\mathbf{u}]_{\chi}$ into $[\mathbf{A}\mathbf{u}]_{\chi}$:

$$\begin{array}{cccc} \mathbf{u} & \stackrel{\mathbf{A}}{\longrightarrow} & \mathbf{A}\mathbf{u} \\ \uparrow \mathbf{X} & & \downarrow \mathbf{X}^{\mathrm{T}} \\ \left[\mathbf{u}\right]_{\chi} & \stackrel{[\mathbf{A}]_{\chi}}{\longrightarrow} & \left[\mathbf{A}\mathbf{u}\right]_{\chi} \end{array}$$

From the above diagram, we see that this matrix is the composition of \mathbf{X} , \mathbf{A} , and \mathbf{X}^{T} :

$$\Lambda = \mathbf{X}^{\mathrm{T}} \mathbf{A} \mathbf{X}.$$

We observe that Λ is diagonal with $\Lambda_{ii} = \lambda_i$, the eigenvalue of **A** associated with eigenvector, \mathbf{x}_i .

Spectral Thm. for Sym. Matrices

Any symmetric $N \times N$ matrix, **A**, with *N* distinct eigenvalues, can be factored as follows:

$$\mathbf{A} = \mathbf{X} \Lambda \mathbf{X}^{\mathrm{T}}$$

where Λ is $N \times N$ and diagonal, **X** and **X**^T are $N \times N$ matrices, and the *i*-th column of **X** (equal to the *i*-th row of **X**^T) is an *eigenvector* of **A**:

$$\lambda_i \mathbf{x}_i = \mathbf{A} \mathbf{x}_i$$

with eigenvalue $\Lambda_{ii} = \lambda_i$. Note that \mathbf{x}_i is orthogonal to \mathbf{x}_j when $i \neq j$:

$$(\mathbf{X}\mathbf{X}^{\mathrm{T}})_{ij} = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

In other words, $\mathbf{X}\mathbf{X}^{\mathrm{T}} = \mathbf{I}$. Consequently,

$$\mathbf{X}^{\mathrm{T}} = \mathbf{X}^{-1}$$

Using the definition of matrix product and the fact that Λ is diagonal, we can write $\mathbf{A} = \mathbf{X}\Lambda\mathbf{X}^{\mathrm{T}}$ as

$$\begin{aligned} \left(\mathbf{A}\right)_{ij} &= \sum_{k=1}^{N} \left(\mathbf{X}\right)_{ik} \Lambda_{kk} \left(\mathbf{X}^{\mathrm{T}}\right)_{kj}.\\ \text{Since } \mathbf{X} &= \left[\mathbf{x}_{1} \left|\mathbf{x}_{2}\right| \dots \left|\mathbf{x}_{N}\right] \text{ and } \Lambda_{kk} = \lambda_{k} \\ \left(\mathbf{A}\right)_{ij} &= \sum_{k=1}^{N} \left(\mathbf{x}_{k}\right)_{i} \lambda_{k} \left(\mathbf{x}_{k}\right)_{j} \\ &= \sum_{k=1}^{N} \left(\lambda_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{T}}\right)_{ij} \\ \mathbf{A} &= \sum_{k=1}^{N} \lambda_{k} \mathbf{x}_{k} \mathbf{x}_{k}^{\mathrm{T}} \end{aligned}$$

where $\lambda_k \mathbf{x}_k = \mathbf{A}\mathbf{x}_k$.

The spectral factorization of A is:

$$\mathbf{A} = \lambda_1 \mathbf{x}_1 \mathbf{x}_1^{\mathrm{T}} + \lambda_2 \mathbf{x}_2 \mathbf{x}_2^{\mathrm{T}} + \dots + \lambda_N \mathbf{x}_N \mathbf{x}_N^{\mathrm{T}}.$$

Note that each $\lambda_n \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}}$ is a rank one matrix. Let $\mathbf{A}_i = \lambda_i \mathbf{x}_i \mathbf{x}_i^{\mathrm{T}}$. Now, because $\mathbf{x}_i^{\mathrm{T}} \mathbf{x}_i = 1$:

$$\lambda_i \mathbf{x}_i = (\lambda_i \mathbf{x}_i \mathbf{x}_i^{\mathrm{T}}) \mathbf{x}_i \\ = \mathbf{A}_i \mathbf{x}_i$$

i.e., \mathbf{x}_i is the only eigenvector of \mathbf{A}_i and its only eigenvalue is λ_i .

Diag. of Non-symmetric Matrices

The situation is more complex when the transformation is represented by a nonsymmetric matrix, **P**. Let the columns of **X** be **P**'s *right eigenvectors* and the rows of \mathbf{Y}^{T} be its *left eigenvectors*. Then **X** and $\mathbf{Y}^{T} = \mathbf{X}^{-1}$ take us back and forth between the standard basis and *x* :

$$\mathbf{u} \stackrel{\mathbf{Y}^{\mathrm{T}}}{\xleftarrow{}} \left[\mathbf{u}\right]_{x} .$$
$$\mathbf{X}$$

The matrix we seek maps $[\mathbf{u}]_{\chi}$ into $[\mathbf{Pu}]_{\chi}$:

$$\begin{array}{ccc} \mathbf{u} & \stackrel{\mathbf{P}}{\longrightarrow} & \mathbf{P}\mathbf{u} \\ \uparrow \mathbf{X} & & \downarrow \mathbf{Y}^{\mathrm{T}} \\ \left[\mathbf{u}\right]_{\chi} & \stackrel{\Lambda}{\longrightarrow} & \left[\mathbf{P}\mathbf{u}\right]_{\chi} \end{array}$$

From the above diagram, we see that this matrix is the composition of \mathbf{X} , \mathbf{P} , and \mathbf{Y}^{T} :

$$\Lambda = \mathbf{Y}^{\mathrm{T}} \mathbf{P} \mathbf{X}$$

We observe that Λ is diagonal with $\Lambda_{ii} = \lambda_i$, the eigenvalue of **P** associated with right eigenvector, \mathbf{x}_i , and left eigenvector, \mathbf{y}_i .

Spectral Theorem

Any $N \times N$ matrix, **P**, with N distinct eigenvalues, can be factored as follows:

$$\mathbf{P} = \mathbf{X} \Lambda \mathbf{Y}^{\mathrm{T}}$$

where Λ is $N \times N$ and diagonal, **X** and **Y**^T are $N \times N$ matrices, and the *i*-th column of **X** is a *right eigenvector* of **P**:

$$\lambda_i \mathbf{x}_i = \mathbf{P} \mathbf{x}_i$$

with eigenvalue $\Lambda_{ii} = \lambda_i$ and the *i*-th row of \mathbf{Y}^{T} is a *left eigenvector* of **P**:

$$\lambda_i \mathbf{y}_i^{\mathrm{T}} = \mathbf{y}_i^{\mathrm{T}} \mathbf{P}$$

with the same eigenvalue.

Spectral Theorem (contd.)

Note that \mathbf{x}_i is orthogonal to \mathbf{y}_j when $i \neq j$:

$$\left(\mathbf{X}\mathbf{Y}^{\mathrm{T}}\right)_{ij} = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$$

In other words, $\mathbf{X}\mathbf{Y}^{\mathrm{T}} = \mathbf{I}$. Consequently,

$$\mathbf{Y}^{\mathrm{T}} = \mathbf{X}^{-1}.$$

Spectral Theorem (contd).

The *spectral factorization* of **P** is:

$$\mathbf{P} = \lambda_1 \mathbf{x}_1 \mathbf{y}_1^{\mathrm{T}} + \lambda_2 \mathbf{x}_2 \mathbf{y}_2^{\mathrm{T}} + \dots + \lambda_N \mathbf{x}_N \mathbf{y}_N^{\mathrm{T}}.$$

Note that each $\lambda_n \mathbf{x}_n \mathbf{y}_n^{\mathrm{T}}$ is a rank one matrix. Let $\mathbf{P}_i = \lambda_i \mathbf{x}_i \mathbf{y}_i^{\mathrm{T}}$. Now, because $\mathbf{y}_i^{\mathrm{T}} \mathbf{x}_i = 1$:

$$\lambda_i \mathbf{x}_i = (\lambda_i \mathbf{x}_i \mathbf{y}_i^{\mathrm{T}}) \mathbf{x}_i$$

= $\mathbf{P}_i \mathbf{x}_i$

and

$$egin{aligned} \lambda_i \mathbf{y}_i^{\mathrm{T}} &= \mathbf{y}_i^{\mathrm{T}} \left(\lambda_i \mathbf{x}_i \mathbf{y}_i^{\mathrm{T}}
ight) \ &= \mathbf{y}_i^{\mathrm{T}} \mathbf{P}_i \end{aligned}$$

i.e., \mathbf{x}_i and \mathbf{y}_i are the sole right and left eigenvectors of \mathbf{P}_i . The only eigenvalue is λ_i .

Stochastic Matrices

If **P** is stochastic, then

$$1 = \sum_{i} P_{ij}.$$

Let $\mathbf{y}^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}$. It follows that $(\mathbf{y}^{\mathrm{T}})_{j} = \sum_{i} (\mathbf{y}^{\mathrm{T}})_{i} P_{ij}$.

Consequently, \mathbf{y}^{T} is a left eigenvector with unit eigenvalue of every stochastic matrix:

$$\mathbf{y}^{\mathrm{T}} = \mathbf{y}^{\mathrm{T}} \mathbf{P}.$$

Stochastic Matrices (contd.)

What is the representation of an arbitrary distribution, **z**, in the basis of eigenvectors of an arbitrary stochastic matrix, **P**?

 $\mathbf{z} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_1 + \dots + c_N \mathbf{x}_N = \mathbf{X}\mathbf{c}.$

Solving for **c**:

$$\mathbf{c} = \mathbf{X}^{-1}\mathbf{z} = \mathbf{Y}^{\mathrm{T}}\mathbf{z}.$$

Since $\mathbf{y}_{1}^{\mathrm{T}} = \begin{bmatrix} 1 \ 1 \ \dots \ 1 \end{bmatrix}$, it follows that:
 $c_{1} = \sum_{j} Y_{1j}^{\mathrm{T}} z_{j} = \sum_{j} z_{j} = 1$

which is independent of the specific z and P!