
Change of Basis

Consider a linear transform,PB , and its
inverse,P−1

B
, which map a vector back

and forth between its representation in
the standard basis and its representation
in the basis,B :

PB
u −→
← [u]

B

P−1
B

.



Change of Basis (contd).

LetB consist ofN basis vectors,b1 . . .bN.
Since[u]

B
is the representation ofu in

B , it follows that

u =([u]
B
)1b1+([u]

B
)2b2+ . . .([u]

B
)N bN.

But this is just the matrix vector prod-
uct

u = B [u]
B

where

B =
[

b1 b2 . . . bN
]

.

We see thatPB = B−1 andP−1
B

= B.



Similarity Transforms

Now consider a linear transformation rep-
resented in the standard basis by the ma-
trix A. We seek[A]

B
, i.e., the represen-

tation of the corresponding linear trans-
formation in the basisB :

u A
−→ Au

↑ B ↓ B−1

[u]
B

[A]
B

−→ [Au]
B

The matrix we seek maps[u]
B

into [Au]
B
.

From the above diagram, we see that
this matrix is the composition ofB, A,
andB−1:

[A]
B

= B−1AB.

We say thatA and[A]
B

are related by a
similarity transform.



Diag. of Symmetric Matrices

Because of linearity, one might expect
that a transformation will have an espe-
cially simple representation in the ba-
sis of its eigenvectors,X . Let A be its
representation in the standard basis and
let the columns ofX be the eigenvec-
tors of A. ThenX andXT = X−1 take
us back and forth between the standard
basis andX :

XT

u −→
←− [u]

X

X
.



Diag. of Symmetric Matrices (contd.)

The matrix we seek maps[u]
X

into [Au]
X

:

u A
−→ Au

↑ X ↓ XT

[u]
X

[A]
X

−→ [Au]
X

From the above diagram, we see that
this matrix is the composition ofX, A,
andXT:

Λ = XTAX.

We observe thatΛ is diagonal withΛii =
λi, the eigenvalue ofA associated with
eigenvector,xi.



Spectral Thm. for Sym. Matrices

Any symmetricN×N matrix, A, with
N distinct eigenvalues, can be factored
as follows:

A = XΛXT

whereΛ is N×N and diagonal,X and
XT areN×N matrices, and thei-th col-
umn ofX (equal to thei-th row of XT)
is aneigenvector of A:

λixi = Axi

with eigenvalueΛii = λi. Note thatxi is
orthogonal tox j wheni 6= j:

(

XXT
)

i j
= δi j =

{

1 if i = j
0 otherwise.

In other words,XXT = I. Consequently,

XT = X−1
.



Spectral Thm. for Sym. Matrices (contd).

Using the definition of matrix product
and the fact thatΛ is diagonal, we can
write A = XΛXT as

(A)i j =
N

∑
k=1

(X)ik Λkk

(

XT
)

k j
.

SinceX =
[

x1 x2 . . . xN
]

andΛkk = λk

(A)i j =
N

∑
k=1

(xk)i λk (xk) j

=
N

∑
k=1

(

λkxkxT
k

)

i j

A =
N

∑
k=1

λkxkxT
k

whereλkxk = Axk.



Spectral Thm. for Sym. Matrices (contd).

Thespectral factorization of A is:

A = λ1x1xT
1 +λ2x2xT

2 + · · ·+λNxNxT
N.

Note that eachλnxnxT
n is a rank one ma-

trix. Let Ai = λixixT
i . Now, because

xT
i xi = 1:

λixi =
(

λixixT
i

)

xi

= Aixi

i.e., xi is the only eigenvector ofAi and
its only eigenvalue isλi.



Diag. of Non-symmetric Matrices

The situation is more complex when the
transformation is represented by a non-
symmetric matrix,P. Let the columns
of X be P’s right eigenvectors and the
rows ofYT be itsleft eigenvectors. Then
X andYT = X−1 take us back and forth
between the standard basis andX :

YT

u −→
←− [u]

X

X
.



Diag. of Non-symmetric Matrices (contd.)

The matrix we seek maps[u]
X

into [Pu]
X

:

u P
−→ Pu

↑ X ↓ YT

[u]
X

Λ
−→ [Pu]

X

From the above diagram, we see that
this matrix is the composition ofX, P,
andYT:

Λ = YTPX

We observe thatΛ is diagonal withΛii =
λi, the eigenvalue ofP associated with
right eigenvector,xi, and left eigenvec-
tor, yi.



Spectral Theorem

Any N ×N matrix, P, with N distinct
eigenvalues, can be factored as follows:

P = XΛYT

whereΛ is N×N and diagonal,X and
YT areN×N matrices, and thei-th col-
umn ofX is aright eigenvector of P:

λixi = Pxi

with eigenvalueΛii = λi and thei-th row
of YT is a left eigenvector of P:

λiyT
i = yT

i P

with the same eigenvalue.



Spectral Theorem (contd.)

Note thatxi is orthogonal toy j when
i 6= j:

(

XYT
)

i j
= δi j =

{

1 if i = j
0 otherwise.

In other words,XYT = I. Consequently,

YT = X−1
.



Spectral Theorem (contd).

Thespectral factorization of P is:

P = λ1x1yT
1 +λ2x2yT

2 + · · ·+λNxNyT
N.

Note that eachλnxnyT
n is a rank one ma-

trix. Let Pi = λixiyT
i . Now, because

yT
i xi = 1:

λixi =
(

λixiyT
i

)

xi

= Pixi

and

λiyT
i = yT

i

(

λixiyT
i

)

= yT
i Pi

i.e., xi andyi are the sole right and left
eigenvectors ofPi. The only eigenvalue
is λi.



Stochastic Matrices

If P is stochastic, then

1 = ∑
i

Pi j.

Let yT =
[

1 1 ... 1
]

. It follows that
(

yT
)

j
= ∑

i

(

yT
)

i
Pi j.

Consequently,yT is a left eigenvector
with unit eigenvalue of every stochastic
matrix:

yT = yTP.



Stochastic Matrices (contd.)

What is the representation of an arbi-
trary distribution,z, in the basis of eigen-
vectors of an arbitrary stochastic ma-
trix, P?

z = c1x1+ c2x1+ · · ·+ cNxN = Xc.

Solving forc:

c = X−1z = YTz.

SinceyT
1 =

[

1 1 ... 1
]

, it follows that:

c1 = ∑
j

Y T
1 j z j = ∑

j

z j = 1

which is independent of the specificz
andP!


