
Discrete Information Source

• A source alphabet, X = {x1, ...,xn}.
• A source distribution, P= {p1, ..., pn}.
• A code alphabet, S = {s1, ...,sr}.
• A set of code words, U = {u1, ...,un}.



Kraft’s Inequality

It is a necessary and sufficient condition
for the existence of an instantaneous code
that

n

∑
i=1

1
r`i
≤ 1

where r is the size of the code alphabet,
and `i is the length of the code word, ui.

Proof Let w1 be the number of code
words of length one. Since there are
only r symbols in the code alphabet:

w1 ≤ r.



Kraft’s Inequality (contd.)

We observe that there are r−w1 unused
symbols in the code alphabet. Let w2

be the number of code words of length
two. There are r−w1 possibilities for
the first symbol and r possibilities for
the second symbol. It follows that:

w2 ≤ (r−w1)r = r2−w1r.



Kraft’s Inequality (contd.)

Let w3 be the number of code words of
length three. There are (r−w1)r−w2

possibilities for the first two symbols,
and r possibilities for the third symbol.
It follows that:

w3≤ [(r−w1)r−w2]r = r3−w1r2−w2r.



Kraft’s Inequality (contd.)

If m is the maximum length of the code
words, then

wm≤ rm−w1rm−1−w2rm−2−...−wm−1r.
Dividing by rm gives
wmr−m ≤ 1−w1r−1−w2r−2− ...−wm−1r−m+1

0 ≤ 1−w1r−1−w2r−2− ...−wm−1r−m+1−wmr−m

−1 ≤ −w1r−1−w2r−2− ...−wm−1r−m+1−wmr−m.

Multiplying by −1 gives
w1r−1+w2r−2+ ...+wm−1r−m+1+wmr−m ≤ 1

m

∑
j=1

w jr− j ≤ 1.



Kraft’s Inequality (contd.)

But this is just
m

∑
j=1

w jr− j =
m

∑
j=1

w j
1
r j ≤ 1

which can be expanded as follows:
1
r1 + ...+

1
r1︸ ︷︷ ︸

w1

+
1
r2 + ...+

1
r2︸ ︷︷ ︸

w2

+...+
1
rm + ...+

1
rm︸ ︷︷ ︸

wm

≤ 1.

Since l1 = l2 = ...= lw1 = 1 and lw1+1 =
lw1+2 = ... = lw1+w2 = 2, etc. and since
w1+w2+ ...+wm = n it follows that:

1
rl1

+ ...+
1

rlw1︸ ︷︷ ︸
w1

+
1

rlw1+1
+ ...+

1
rlw1+w2︸ ︷︷ ︸

w2

+...+

1

rlw1+w2+...+wm−1+1
+ ...+

1
rlw1+w2+...+wm︸ ︷︷ ︸

wm

=
n

∑
i=1

1
r`i
≤ 1.



Example

An information source, X , has source
alphabet, {x1,x2,x3,x4}. We would like
to encode messages using a binary code
alphabet, {0,1}, with code words of the
following lengths:

{`1 = 1, `2 = 2, `3 = 3, `4 = 4}
After evaluating Kraft’s inequality:

1
21 +

1
22 +

1
23 +

1
24 ≈ 0.94≤ 1

we conclude that an instantaneous code
with these lengths exists. In fact,

{u1 = 0,u2 = 10,u3 = 110,u4 = 1110}
is one such code.



1 0

01 001011

111 110 101 100 011 010 001 000

1 0 1 0 1 0 1 0

1 0 1 0

1 0

Figure 1: Complete binary tree of height three showing code words associated
with interior vertices and leaves.



1

1/2 1/2

1/4 1/41/41/4

1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

1 0 1 0 1 0 1 0

1 0 1 0

1 0

1

1/2

1/4

1/8

Figure 2: Complete binary tree of height three showing 1/2`i for each vertex
where `i is the length of the code word associated with the vertex.



1

1/2 1/2

1/4 1/41/41/4

1/8 1/8 1/8 1/8

1

1/2 1/2

1/4 1/41/41/4

1/8 1/8 1/8 1/8

1

1/2 1/2

1/4 1/41/41/4

1/8 1/8 1/8 1/8

1

1/2 1/2

1/4 1/41/41/4

1/8 1/8 1/8 1/8

11 10

011   010   001  000

101  100   011   010

11 00 10 00

 011   010 111   110

 111   110

10 01

 001   000

Figure 3: Four different instantaneous binary codes for a source alphabet of length
six. Code words are associated with leafs not interior vertices and ∑

6
i=1 1/2`i = 1

in all cases.



1

1/8

1/21/2

1/41/4

1/8

1/16

1110

110

10

0

Figure 4: An instantaneous binary code where {`1 = 1, `2 = 2, `3 = 3, `4 = 4} and
∑

4
i=1 1/2`i ≈ 0.94.



Source Coding Theorem

Consider a set of n code words, U =
{u1, ...,un}, with lengths, L= {`1, ..., `n},
and probability distribution, P= {p1, ..., pn}.
All code words are composed of sym-
bols from the code alphabet, {s1, ...,sr}.
If Kraft’s inequality is satisfied, then

HU

logr
≤ 〈L〉=

n

∑
i=1

pi`i

with equality iff pi = 1/r`i for 1≤ i≤ n.



Source Coding Theorem (contd.)

Proof We will show that HU
logr ≤ 〈L〉 by

showing that HU−〈L〉 logr ≤ 0:

HU−〈L〉 logr = −
n

∑
i=1

pi log pi− logr
n

∑
i=1

pi`i

= −
n

∑
i=1

(pi log pi+ pi`i logr)

=
n

∑
i=1

pi log
(

1
pir`i

)



Source Coding Theorem (contd.)

We now take advantage of the fact that
loga≤ (a−1) loge:

HU−〈L〉 logr =
n

∑
i=1

pi log
(

1
pir`i

)
≤ loge

n

∑
i=1

pi

(
1

pir`i
−1
)

≤ loge
n

∑
i=1

(
1
r`i
− pi

)
≤ loge

n

∑
i=1

1
r`i
− loge

n

∑
i=1

pi

≤ loge
n

∑
i=1

1
r`i
− loge



Source Coding Theorem (contd.)

Since the Kraft inequality
n

∑
i=1

1
r`i
≤ 1

is satisfied, it follows that

HU−〈L〉 logr ≤ 0

which can be rearranged to yield
HU

logr
≤ 〈L〉 .



Why the Unit of Entropy is Bits

We just showed that
HU

logr
≤ 〈L〉 .

When the code is binary, logr is one.
Consequently, for binary codes:

HU ≤ 〈L〉 .
We now see the connection between the
units of Shannon’s entropy and the 0s
and 1s which are used to represent in-
formation in a computer’s memory. A
message cannot be encoded using a string
of 0s and 1s which is shorter on average
than its information content when mea-
sured in bits!



Coding Efficiency

The Source Coding Theorem tells us that
HU

logr
≤ 〈L〉 .

Since HU and logr are positive

0 ≤ HU

logr
≤ 〈L〉 .

Dividing the inequality by 〈L〉 yields a
number between zero and one represent-
ing the efficiency of a code:

0 ≤ HU

〈L〉 logr
≤ 1.

Given that some codes are more effi-
cient than others, it is natural to ask how
we can find efficient codes.



Balanced Tree Coding

1. Merge the source symbols into r sets,
so that the sums of the probabilities
in each set are as equal as possible.

2. Assign a unique code alphabet sym-
bol to the members of each set.

3. Repeat this process until the sets are
of size r or less.



A

E

F

B

C

D

0.4

0.3

0.1

0.1

0.06

0.04

A

E

F

0.4

0.06

0.04

B

C

D

0.3

0.1

0.1

A 0.4

E

F

0.06

0.04

B 0.3

C

D

0.1

0.1

00

E

F

0.06

0.04

C

D

0.1

0.1

010

011

10

110

111

Figure 5: Balanced tree coding example.



Huffman Coding

1. Sort the source alphabet in order of
decreasing probability. These are the
leaves of the “coding tree.”

2. Merge the r source symbols with small-
est probability into a new “source sym-
bol” with probability equal to the sum
of the r smallest probabilities. This
is an interior node of the coding tree.

3. Repeat this process until only one source
symbol (with probability one) remains.
This is the root of the coding tree.



Huffman Coding (contd.)

4. To find the codeword for a given source
symbol trace the coding tree from the
root to the source symbol (leaf), e.g.,
when r = 2, add a zero to the code-
word when traversing a left branch
and a one when traversing a right branch.



0.4

0.3

0.1

0.1

0.1

0.1

0.2

0.4

0.6

1

0

1

0

1

0

1

0

1

0

1

A

B

C

D

E

F

A

B

C

D

C

0.4

0.3

A

B

A

A

B

A

B

C

D

E

F

1

00

0100

01010

01011

0.4

0.3

0.1

0.1

0.06

0.04

0.4

0.3

0.3

011

Figure 6: Huffman coding example.



Huffman Coding (contd).

• If the number of symbols in the code
alphabet is r, then there must be n =
r+k(r−1) source alphabet symbols
(k integer) in the Huffman code.

• This is because each stage of the Huff-
man coding algorithm reduces the size
of the source alphabet by r− 1 and
there must be r symbols in the final
stage to merge to form the root of the
coding tree.

• If there are less source alphabet sym-
bols, then one must add source sym-
bols (with probability zero), until n=
r+ k(r−1) for some integer k.



1/6 1/31/61/9

B ACDEFG

1/91/90

2/9 4/9

A

1/3

1

012

A

1/3

CD

1/61/9 2/9

B

1/6

EFG

1/91/90

012012

B

A 1

00

C 01

D 02

E 20

F 21

G 22

Figure 7: Huffman coding example (3 symbol code alphabet). Note the addition
of a source symbol with probability zero.


