Fourier Transform Pairs

The Fourier transform transforms a function of time, $f(t)$, into a function of frequency, $F(s)$:

$$
\mathcal{F}\{f(t)\}(s)=F(s)=\int_{-\infty}^{\infty} f(t) e^{-j 2 \pi s t} d t
$$

The inverse Fourier transform transforms a function of frequency, $F(s)$, into a function of time, $f(t)$:

$$
\mathcal{F}^{-1}\{F(s)\}(t)=f(t)=\int_{-\infty}^{\infty} F(s) e^{j 2 \pi s t} d s
$$

The inverse Fourier transform of the Fourier transform is the identity transform:

$$
f(t)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(\tau) e^{-j 2 \pi s \tau} d \tau\right] e^{j 2 \pi s t} d s
$$

Fourier Transform Pairs (contd).

Because the Fourier transform and the inverse Fourier transform differ only in the sign of the exponential's argument, the following reciprocal relation holds between $f(t)$ and $F(s)$:

$$
f(t) \xrightarrow{\mathcal{F}} F(s)
$$

is equivalent to

$$
F(t) \xrightarrow{\mathcal{F}} f(-s) .
$$

This relationship is often written more economically as follows:

$$
f(t) \stackrel{\mathcal{F}}{\longleftrightarrow} F(s)
$$

where $f(t)$ and $F(s)$ are said to be a Fourier transform pair.

Fourier Transform of Gaussian

Let $f(t)$ be a Gaussian:

$$
f(t)=e^{-\pi t^{2}}
$$

By the definition of Fourier transform we see that:

$$
\begin{aligned}
F(s) & =\int_{-\infty}^{\infty} e^{-\pi t^{2}} e^{-j 2 \pi s t} d t \\
& =\int_{-\infty}^{\infty} e^{-\pi\left(t^{2}+j 2 s t\right)} d t
\end{aligned}
$$

Now we can multiply the right hand side by $e^{-\pi s^{2}} e^{\pi s^{2}}=1$:

$$
\begin{aligned}
F(s) & =e^{-\pi s^{2}} \int_{-\infty}^{\infty} e^{-\pi\left(t^{2}+j 2 s t\right)+\pi s^{2}} d t \\
& =e^{-\pi s^{2}} \int_{-\infty}^{\infty} e^{-\pi\left(t^{2}+j 2 s t-s^{2}\right)} d t \\
& =e^{-\pi s^{2}} \int_{-\infty}^{\infty} e^{-\pi(t+j s)(t+j s)} d t \\
& =e^{-\pi s^{2}} \int_{-\infty}^{\infty} e^{-\pi(t+j s)^{2}} d t
\end{aligned}
$$

Fourier Transform of Gaussian (contd.)

$$
F(s)=e^{-\pi s^{2}} \int_{-\infty}^{\infty} e^{-\pi(t+j s)^{2}} d t
$$

After substituting u for $t+j s$ and $d u$ for $d t$ we see that:

$$
F(s)=e^{-\pi s^{2}} \underbrace{\int_{-\infty}^{\infty} e^{-\pi u^{2}} d u}_{1}
$$

It follows that the Gaussian is its own Fourier transform:

$$
e^{-\pi t^{2}} \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-\pi s^{2}}
$$

Fourier Transform of Dirac Delta Function

To compute the Fourier transform of an impulse we apply the definition of Fourier transform:
$\mathcal{F}\left\{\boldsymbol{\delta}\left(t-t_{0}\right)\right\}(s)=F(s)=\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-j 2 \pi s t} d t$
which, by the sifting property of the impulse, is just:

$$
e^{-j 2 \pi s t_{0}}
$$

It follows that:

$$
\delta\left(t-t_{0}\right) \xrightarrow{\mathcal{F}} e^{-j 2 \pi s t_{0}} .
$$

Fourier Transform of Harmonic Signal

What is the inverse Fourier transform of an impulse located at s_{0} ? Applying the definition of inverse Fourier transform yields:
$\mathcal{F}^{-1}\left\{\boldsymbol{\delta}\left(s-s_{0}\right)\right\}(t)=f(t)=\int_{-\infty}^{\infty} \delta\left(s-s_{0}\right) e^{j 2 \pi s t} d s$
which, by the sifting property of the impulse, is just:

$$
e^{j 2 \pi s_{0} t}
$$

It follows that:

$$
e^{j 2 \pi s_{0} t} \xrightarrow{\mathcal{F}} \delta\left(s-s_{0}\right) .
$$

Fourier Transform of Sine and Cosine

We can compute the Fourier transforms of the sine and cosine by exploiting the sifting property of the impulse:

$$
\int_{-\infty}^{\infty} f(x) \boldsymbol{\delta}\left(x-x_{0}\right) d x=f\left(x_{0}\right)
$$

- Question What is the inverse Fourier transform of a pair of impulses spaced symmetrically about the origin?

$$
\mathcal{F}^{-1}\left\{\delta\left(s+s_{0}\right)+\boldsymbol{\delta}\left(s-s_{0}\right)\right\}
$$

- Answer By definition of inverse Fourier transform:

$$
f(t)=\int_{-\infty}^{\infty}\left[\delta\left(s+s_{0}\right)+\delta\left(s-s_{0}\right)\right] e^{j 2 \pi s t} d s
$$

Fourier Transform of Sine and Cosine (contd.)

Expanding the above yields the following expression for $f(t)$:

$$
\int_{-\infty}^{\infty} \delta\left(s+s_{0}\right) e^{j 2 \pi s t} d s+\int_{-\infty}^{\infty} \delta\left(s-s_{0}\right) e^{j 2 \pi s t} d s
$$

Which by the sifting property is just:

$$
\begin{aligned}
f(t) & =e^{j 2 \pi s_{0} t}+e^{-j 2 \pi s_{0} t} \\
& =2 \cos \left(2 \pi s_{0} t\right)
\end{aligned}
$$

Fourier Transform of Sine and Cosine (contd.)

It follows that

$$
\cos \left(2 \pi s_{0} t\right) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2}\left[\delta\left(s+s_{0}\right)+\delta\left(s-s_{0}\right)\right] .
$$

A similar argument can be used to show:

$$
\sin \left(2 \pi s_{0} t\right) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{j}{2}\left[\delta\left(s+s_{0}\right)-\delta\left(s-s_{0}\right)\right]
$$

Fourier Transform of the Pulse

To compute the Fourier transform of a pulse we apply the definition of Fourier transform:

$$
\begin{aligned}
F(s) & =\int_{-\infty}^{\infty} \Pi(t) e^{-j 2 \pi s t} d t \\
& =\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-j 2 \pi s t} d t \\
& =\left.\frac{1}{-j 2 \pi s} e^{-j 2 \pi s t}\right|_{-\frac{1}{2}} ^{\frac{1}{2}} \\
& =\frac{1}{-j 2 \pi s}\left(e^{-j \pi s}-e^{j \pi s}\right) \\
& =\frac{1}{\pi s} \frac{\left(e^{j \pi s}-e^{-j \pi s}\right)}{2 j}
\end{aligned}
$$

Using the fact that $\sin (x)=\frac{\left(e^{j x}-e^{-j x}\right)}{2 j}$ we see that:

$$
F(s)=\frac{\sin (\pi s)}{\pi s}
$$

Fourier Transform of the Shah Function

Recall the Fourier series for the Shah function:

$$
\frac{1}{2 \pi} \mathrm{III}\left(\frac{\mathrm{t}}{2 \pi}\right)=\frac{1}{2 \pi} \sum_{\omega=-\infty}^{\infty} e^{j \omega t}
$$

By the sifting property,

$$
\operatorname{III}\left(\frac{\mathrm{t}}{2 \pi}\right)=\sum_{\omega=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(s-\omega) e^{j s t} d s
$$

Changing the order of the summation and the integral yields

$$
\operatorname{III}\left(\frac{\mathrm{t}}{2 \pi}\right)=\int_{-\infty}^{\infty} \sum_{\omega=-\infty}^{\infty} \delta(s-\omega) e^{j s t} d s
$$

Factoring out $e^{j s t}$ from the summation

$$
\begin{aligned}
\operatorname{III}\left(\frac{\mathrm{t}}{2 \pi}\right) & =\int_{-\infty}^{\infty} e^{j s t} \sum_{\omega=-\infty}^{\infty} \delta(s-\omega) d s \\
& =\int_{-\infty}^{\infty} e^{j s t} \operatorname{III}(\mathrm{~s}) d s
\end{aligned}
$$

Fourier Transform of the Shah Function

Substituting $2 \pi \tau$ for t yields

$$
\begin{aligned}
\operatorname{III}(\tau) & =\int_{-\infty}^{\infty} \operatorname{III}(s) e^{j 2 \pi s \tau} d s \\
& =\mathcal{F}^{-1}\{\operatorname{III}(s)\}(\tau) .
\end{aligned}
$$

Consequently we see that

$$
\mathcal{F}\{\mathrm{III}\}=\mathrm{III} .
$$

