Random Walk on Circle

Imagine a Markov process governing the
random motion of a particle on a circu-

lar lattice:
1-2y

o=y y ~@

The particle moves to the right or left
with probability ¥ and stays where it 1s
with probability 1 —2y.



Random Walk on Circle (contd.)

The random walk can be defined as fol-
lows:

P = X peaeli | )p()

where

( (1=2y) if i=
pn(il)=4 ¥ ifi=j+1modN
0 otherwise.

\

and i, j € {0,1,... . N—1}.



Random Walk on Circle (contd.)

Because Markov processes are linear,
the distribution at time 7+ 1 can be com-
puted from the distribution at time ¢ by

matrix vector product:

x ) = px).

Because the random walk 1s shift-invariant,

the transition matrix P 1is circulant:

(1-2y) vy 0...0 vy
p_ Yy (1-2y)vy...0 O

Y 0O 0...v((1-2y)




Diffusion in the Frequency Domain

Since P is circulant, it is diagonalized
by the DFT:

P=WAW"

where the matrix A contains the eigen-
values of P on its diagonal:

(A 00... O
0OAMO0... O

A —

0 00... Ay_q



Diffusion in the Frequency Domain (contd.)

Multiplying both sides of this expres-
sion by W* yields

P = WAW"
WP = WWAW"
WP = AW*
W'py = Aw,

where po and w;, are the first columns
of P and W*. Since wj, = —— and A is

VN
diagonal, 1t follows that

(I_YZY) _7»0_ [ 0 ] [0 ]
WH* 0 — L 8 _|_L }:)1 + _|_L O
. | TN N | W\ o
0 :
v O_ 0 _7¥N—1
Mo
S|
VN |
| An-1




Diffusion in the Frequency Domain (contd.)

We see that the eigenvalues are /N times
the DFT of P’s first column:

(N—1)
N

7\'m _ ,Ye—jZTEmllv 4 (1 o 2Y) _l_,Ye—j27tm
Because —(N—1) mod Nand —1 = (N —
1) mod N are conjugate frequencies

(N-1)

. . N—1
e Py —I—e_fz’tmllv —2¢0S <2nm( N )) .

It follows that the eigenvalues of P are
real. Since y < 1/2 and

N—1
O<cos<2nm( N )) <1

for 0 <m < N —1, it follows that Ay = 1
and 0 < A,,, < 1 form > 0.




Diffusion in the Frequency Domain (contd.)

The update equation for the Markov pro-
cess looks like this:

xHD — WAW*x".

Because A 1s diagonal, higher powers
of P are easy to compute:

P’ = WA'W*
where ] )
7\.6 00 0
Al — 0 NlO 0
_O 0 0... 7‘5\7—1_

Significantly, given an 1nitial distribu-
tion, X9, the distribution at any future
time, x), can be computed by evaluat-
ing:

x) = WA'W*x(0).



Limiting Distribution of Diffusion Process

Taking the limit as ¢ goes to infinity yields
limx") = lim WA'W*x\"

[—>o0 [—>o0
_ ! (0)
tlgg ( E A, W, W )x

where H 1s conjugate transpose. Since
Ao =1 and lim;_,..A,,, = 0 for m # 0 it
follows that

tlggx(t) _ Wowl(){X(O)
1
= —1
N

because wy = \fl and Y x, = 1. We
see that probability mass 1s uniformly
distributed among the sites in the ring.



Diffusion Equation

The following expression for P/™! in
terms of P/, P/, |, and P/_, is termed the
master equation for the diffusion pro-

cess:

PxH_l — th - Z'Yth _I_nyt—l _I_'Yth—i—l
where 2YP! is the probability mass which
leaves P! in one step and YP | +YP[ ,

is the probability mass which enters P/
In one step.



Diffusion Equation (contd.)

The above expression for At = Ax =1
can be generalized for arbitrary At and
Ax by defining y = D-2L:

(Ax)?*
th—I—Al — le‘_
At At At
2DP! +DP! +DP!
J (A T (A)? Y (Ax)?
out n

where D 1is termed the diffusion con-
stant. Solving for (P4 — P!) /At yields:

(th—l—At L le‘) /At

— (Dth%—Ax o 2Dth _|_Dth—Ax) /(Ax)z
= (DP/,»,—DP!+DP/_,,— DP/) /(Ax)



Diffusion Equation (contd.)

(P — P! /At

= D (Pl o, — P!+ Py —P)) /(Ax)*

X

=D [(P +Ax —P ) (th th—Ax)} /(A)C)2

X

which can be rewritten as follows:
t t t t
Px-l—Ax_Px Py _Px—Axi|

th—I—At . th H [ Ax — Ax
At Ax




Diffusion Equation (contd.)

Taking the limit as Ax = Ar — 0O:

fim (2P
At—0 At
(PlaPi)  (B-P
Ax - Ax

Iim D
Ax—0 Ax

yields a partial differential equation (PDE):
oP D82P
o  0Ox?
which 1s known as the diffusion equa-
fion.




Finite Difference Approximation of %

The value of the function, P, at the point,
(x+ Ax,t), can be expressed as a Taylor

series expansion about the point, (x,1),

as follows:

th%—Ax — th—i_
oP (Ax)? 0P ;
Ax — O|(Ax)’|.
o0x o 21 ox? XJ—'_ [(Ax)’]

By rearranging the above, we derive the
forward difference approximation for % S
P xt—l—Ax —P xt _ E

Ax ox

+OJAx].

x,t




Backward Difference Approximation of %

The value of the function, P, at the point,
(x — Ax,t), can be expressed as a Taylor

series expansion about the point, (x,1),

as follows:

th—Ax — th_
oP (—Ax)? 9°P ;
A or x,f 2! o2 x7t+o[(m) |

By rearranging the above, we derive the
backward difference approximation for

£| :
O | X1+
t t
P.X _PX—AX L aP

Ax  Ox

+OJAx].

x,t



Centered Difference Approximation of %

Plac=P+
(Ax)? 9P N (Ax)? 9P
2! axZ_Lt 31 ox3 o

oP

Ax ——
ox mt+—

+0[(Ax)*]

th—Ax — th_
oP N (—Ax)? o*P N (—Ax)’ o°P
dx |, 2! dx? 31 ox?
Subtracting P/_,, from P/ , yields:

oP
ox |,

Ax

+0[(Ax)

x,t

P! —P! , =2Ax—

Ax)’ o°P

(_
2 31 ox3

+ O[(Ax)Y].

x,t




Centered Difference Approx. of % (contd.)

This can be rearranged to yield the cen-

. . . oP.
tered difference approximation for 5-:

P!, —PL, P
oA, tOlAYT

x,t
Notice that the centered difference ap-
proximation 1s second order accurate.




2
Finite Difference Approximation of = a b

The value of the function, dP/dx, at the
point, (x + Ax,?), can be expressed as a
Taylor series expansion about the point,
(x,t), as follows:

%
ox

oP

x+Ax,t dx Xt
0°P (Ax)? 9P
ox2| 2! o3
Given the above we can derive the for-
ward difference approximation for 9P \x %

_|_

Ax +O[(Ax)].

Xt

oP JP
Ox lx+Axt  Oxlxys L aZP

Ax o2

+OJAx].

x,t



Finite Difference Approx. of aZP 5 (contd.)

For reasons of symmetry, we approxi-
mate 2 S P rans and & op S-|x; using backward
differences:

t t t t
[Px a—Pd P{-PL Ax}

Ax Ax
Ax

0°P

>
ox »

Combining terms yields the following
aZP’
X, -

+O[AY].

expression for




Diffusion Equation (reprise)

Applying the finite difference approxi-
mations we’ve derived to the diffusion
equation:

oP D82P
o  oOx2
yields
th+At _th - D th+Ax_2th+th—Ax
At (Ax)?

which can be re-arranged to yield:
pit+i _ pt [PHAAXX_PX b _AP;);_AX}
X X — D
At Ax
which (we recall) 1s equivalent to the

master equation:
)2 AV
X

At L DP! At + DP! At
(Ax)2 TR (A2 T (A2

P! —2DP!



Wave Equation

The partial differential equation govern-
Ing wave motion 1s:

0°P  ,0°P

— =C"=—5.

ot? ox?
Applying the finite difference approxi-

. 2 2 :
mations for %H,t and % xy yields:
PxH_At B 2th + th_At ~ 6'2 th—FAx o 2th + th—Ax
(Ar)? (Ax)? |

Solving for P!™ gives the following
update formula:

t+At t—At
Pl = —pI=a 4

e ()

t 2 At ? t t
Px+c E (Px+Ax+Px—Ax>'




First Order in Time

Unfortunately, this formula 1s second-
order in time. To derive a formula which
1s first-order 1n time, we recall that

vp oP oP

ot x,t+A or X,
902 = t Att ~+olar]

t+At sz d
Al anda us-

2
ing the resulting expression for a z |xt
and a centered difference approxunauon

Replacmg & \x i Ar With =

2
for a z 7 |xs in the wave equation yields:

th+Al_Pt P , , ,
At o xthz Px+Ax_2Px +Px—Ax
At

(Ax)?
Multiplying both sides by At:
t+At  pt
BB prae ™ > (Phar— 2P+ Pl ).

At YT (Ax)?



First Order in Time (contd.)

Multiplying both sides by Af again, and
then adding P! and AzP! to both sides
yields:

Pl‘+Al‘ %Pl‘_i_Al.Pl‘
Ar\°
+C2 (E) (Px:—Ax o 2th T PxZ—AX)
which can be rearranged to give an up-

date equation for P which 1s first-order
n time:

2
P = |1 —2¢° (—) P!+ AtP!




First Order in Time (contd.)

To derive an update equation for P which
1s also first-order in time, we once again
begin with

P P

0*P citht T Orlx
ot Ixt+Ar ot ’t—I—O[At].

902 At
Using the above and a centered differ-

N 2p .
ence approximation for % |x; in the wave

equation results in:
oP oP

ot lxs+Ar Ot lxp - Cz th—i—Ax o 2th + th—Ax
At N (Ax)? '
Writing P! for ¢ %], yields the follow-
ing update equation for P:
At
P!, —2P!+P! ).
( AX) ( x+Ax T )
We observe that the update equations
for both P and P are first-order in time.

YI+At __ pt 2
P, "™ =P . +c



