
Random Walk on Circle

Imagine a Markov process governing the
random motion of a particle on a circu-
lar lattice:

1  –  2 γ

γγ

The particle moves to the right or left
with probability γ and stays where it is
with probability 1−2γ.



Random Walk on Circle (contd.)

The random walk can be defined as fol-
lows:

pt+1(i) =
N−1

∑
j=0

pt+1|t(i | j)pt( j)

where

pt+1|t(i | j)=

 (1−2γ) if i = j
γ if i = j±1 mod N
0 otherwise.

and i, j ∈ {0,1, . . . ,N−1}.



Random Walk on Circle (contd.)

Because Markov processes are linear,
the distribution at time t+1 can be com-
puted from the distribution at time t by
matrix vector product:

x(t+1) = Px(t).

Because the random walk is shift-invariant,
the transition matrix P is circulant:

P=


(1−2γ) γ 0 . . . 0 γ

γ (1−2γ) γ . . . 0 0
... ... ... . . . ... ...
γ 0 0 . . . γ (1−2γ)

 .



Diffusion in the Frequency Domain

Since P is circulant, it is diagonalized
by the DFT:

P = WΛW∗

where the matrix Λ contains the eigen-
values of P on its diagonal:

Λ =


λ0 0 0 . . . 0
0 λ1 0 . . . 0
... ... ... . . . ...
0 0 0 . . . λN−1

 .



Diffusion in the Frequency Domain (contd.)

Multiplying both sides of this expres-
sion by W∗ yields

P = WΛW∗

W∗P = W∗WΛW∗

W∗P = ΛW∗

W∗p0 = Λw∗0
where p0 and w∗0 are the first columns
of P and W∗. Since w∗0 =

1√
N

and Λ is
diagonal, it follows that

W∗



(1−2γ)

γ

0
...
0
γ


=

1√
N


λ0
0
0
...
0

+
1√
N


0
λ1
0
...
0

+ · · ·+
1√
N


0
0
...
0

λN−1



=
1√
N


λ0
λ1
...

λN−1

 .



Diffusion in the Frequency Domain (contd.)

We see that the eigenvalues are
√

N times
the DFT of P’s first column:

λm = γe− j2πm 1
N +(1−2γ)+ γe− j2πm(N−1)

N .

Because−(N−1) mod N and−1=(N−
1) mod N are conjugate frequencies

e− j2πm(N−1)
N +e− j2πm 1

N = 2cos
(

2πm
(N−1)

N

)
.

Since γ < 1/2 and

0 < cos
(

2πm
(N−1)

N

)
< 1

for 0<m<N−1, it follows that λ0 = 1
and 0 < λm < 1 for m > 0.



Diffusion in the Frequency Domain (contd.)

The update equation for the Markov pro-
cess looks like this:

x(t+1) = WΛW∗x(t).

Because Λ is diagonal, higher powers
of P are easy to compute:

P t = WΛ
tW∗

where

Λ
t =


λt

0 0 0 . . . 0
0 λt

1 0 . . . 0
... ... ... . . . ...
0 0 0 . . . λt

N−1

 .
Significantly, given an initial distribu-
tion, x(0), the distribution at any future
time, x(t), can be computed by evaluat-
ing:

x(t) = WΛ
tW∗x(0).



Limiting Distribution of Diffusion Process

Taking the limit as t goes to infinity yields

lim
t→∞

x(t) = lim
t→∞

WΛ
tW∗x(0)

= lim
t→∞

(
N−1

∑
m=0

λ
t
mwmwH

m

)
x(0)

where H is conjugate transpose. Since
λ0 = 1 and limt→∞ λm = 0 for m 6= 0 it
follows that

lim
t→∞

x(t) = w0wH
0 x(0)

=
1
N

1

because w0 =
1√
N

1, and ∑
n−1
n=0 xn = 1. We

see that probability mass is uniformly
distributed among the sites in the ring.



Diffusion Equation

The following expression for P t+1
x in

terms of P t
x , P t

x+1, and P t
x−1 is termed the

master equation for the diffusion pro-
cess:

P t+1
x = P t

x −2γP t
x + γP t

x−1+ γP t
x+1

where 2γP t
x is the probability mass which

leaves P t
x in one step and γP t

x−1+ γP t
x+1

is the probability mass which enters P t
x

in one step.



Diffusion Equation (contd.)

The above expression for ∆t = ∆x = 1
can be generalized for arbitrary ∆t and
∆x by defining γ = D ∆t

(∆x)2:

P t+∆t
x = P t

x−

2DP t
x

∆t
(∆x)2︸ ︷︷ ︸

out

+DP t
x−∆x

∆t
(∆x)2 +DP t

x+∆x
∆t

(∆x)2︸ ︷︷ ︸
in

where D is termed the diffusion con-
stant. Solving for

(
P t+∆t

x −P t
x

)
/∆t yields:(

P t+∆t
x −P t

x

)
/∆t

=
(
DP t

x+∆x−2DP t
x +DP t

x−∆x

)
/(∆x)2

=
(
DP t

x+∆x−DP t
x +DP t

x−∆x−DP t
x

)
/(∆x)2



Diffusion Equation (contd.)(
P t+∆t

x −P t
x

)
/∆t

= D
(
P t

x+∆x−P t
x +P t

x−∆x−P t
x

)
/(∆x)2

= D
[
(P t

x+∆x−P t
x )−

(
P t

x −P t
x−∆x

)]
/(∆x)2

which can be rewritten as follows:

P t+∆t
x −P t

x

∆t
= D

[
P t

x+∆x−P t
x

∆x − P t
x−P t

x−∆x
∆x

]
∆x

.



Diffusion Equation (contd.)

Taking the limit as ∆x = ∆t→ 0:

lim
∆t→0

(
P t+∆t

x −P t
x

)
∆t

=

lim
∆x→0

D

[
(P t

x+∆x−P t
x )

∆x − (P t
x−P t

x−∆x)
∆x

]
∆x

yields a partial differential equation (PDE):

∂P
∂t

= D
∂2P
∂x2

which is known as the diffusion equa-
tion.



Green’s Function

∂P(x, t)
∂t

=
∂2P(x, t)

∂x2

∂

(
1√
4π t

e−x2/4 t
)

∂t
=

∂2
(

1√
4π t

e−x2/4 t
)

∂x2

(x2−2 t) e−x2/4 t

8
√

π t5/2
=

(x2−2 t) e−x2/4 t

8
√

π t5/2



Finite Difference Approximation of ∂P
∂x

The value of the function, P, at the point,
(x+∆x, t), can be expressed as a Taylor
series expansion about the point, (x, t),
as follows:

P t
x+∆x = P t

x +

∆x
∂P
∂x

∣∣∣∣
x,t
+
(∆x)2

2!
∂2P
∂x2

∣∣∣∣
x,t
+O[(∆x)3].

By rearranging the above, we derive the
forward difference approximation for ∂P

∂x |x,t:
P t

x+∆x−P t
x

∆x
=

∂P
∂x

∣∣∣∣
x,t
+O[∆x].



Backward Difference Approximation of ∂P
∂x

The value of the function, P, at the point,
(x−∆x, t), can be expressed as a Taylor
series expansion about the point, (x, t),
as follows:

P t
x−∆x = P t

x−

∆x
∂P
∂x

∣∣∣∣
x,t
+
(−∆x)2

2!
∂2P
∂x2

∣∣∣∣
x,t
+O[(∆x)3].

By rearranging the above, we derive the
backward difference approximation for
∂P
∂x |x,t:

P t
x −P t

x−∆x

∆x
=

∂P
∂x

∣∣∣∣
x,t
+O[∆x].



Centered Difference Approximation of ∂P
∂x

P t
x+∆x = P t

x +

∆x
∂P
∂x

∣∣∣∣
x,t
+
(∆x)2

2!
∂2P
∂x2

∣∣∣∣
x,t
+
(∆x)3

3!
∂3P
∂x3

∣∣∣∣
x,t
+O[(∆x)4]

P t
x−∆x = P t

x−

∆x
∂P
∂x

∣∣∣∣
x,t
+
(−∆x)2

2!
∂2P
∂x2

∣∣∣∣
x,t
+
(−∆x)3

3!
∂3P
∂x3

∣∣∣∣
x,t
+O[(∆x)4]

Subtracting P t
x−∆x from P t

x+∆x yields:

P t
x+∆x−P t

x−∆x = 2∆x
∂P
∂x

∣∣∣∣
x,t
+

2
(−∆x)3

3!
∂3P
∂x3

∣∣∣∣
x,t
+O[(∆x)4].



Centered Difference Approx. of ∂P
∂x (contd.)

This can be rearranged to yield the cen-
tered difference approximation for ∂P

∂x :
P t

x+∆x−P t
x−∆x

2∆x
=

∂P
∂x

∣∣∣∣
x,t
+O[(∆x)2].

Notice that the centered difference ap-
proximation is second order accurate.



Finite Difference Approximation of ∂2P
∂x2

The value of the function, ∂P/∂x, at the
point, (x+∆x, t), can be expressed as a
Taylor series expansion about the point,
(x, t), as follows:

∂P
∂x

∣∣∣∣
x+∆x,t

=
∂P
∂x

∣∣∣∣
x,t
+

∆x
∂2P
∂x2

∣∣∣∣
x,t
+
(∆x)2

2!
∂3P
∂x3

∣∣∣∣
x,t
+O[(∆x)3].

Given the above we can derive the for-
ward difference approximation for ∂2P

∂x2 |x,t:
∂P
∂x

∣∣
x+∆x,t−

∂P
∂x

∣∣
x,t

∆x
=

∂2P
∂x2

∣∣∣∣
x,t
+O[∆x].



Finite Difference Approx. of ∂2P
∂x2 (contd.)

For reasons of symmetry, we approxi-
mate ∂P

∂x |x+∆x,t and ∂P
∂x |x,t using backward

differences:[
P t

x+∆x−P t
x

∆x − P t
x−P t

x−∆x
∆x

]
∆x

=

∂2P
∂x2

∣∣∣∣
x,t
+O[∆x].

Combining terms yields the following
expression for ∂2P

∂x2 |x,t:
P t

x+∆x−2P t
x +P t

x−∆x

(∆x)2 =

∂2P
∂x2

∣∣∣∣
x,t
+O[∆x].



Diffusion Equation (reprise)

Applying the finite difference approxi-
mations we’ve derived to the diffusion
equation:

∂P
∂t

= D
∂2P
∂x2

yields
P t+∆t

x −P t
x

∆t
=D

(
P t

x+∆x−2P t
x +P t

x−∆x

(∆x)2

)
which can be re-arranged to yield:

P t+∆t
x −P t

x

∆t
= D

[
P t

x+∆x−P t
x

∆x − P t
x−P t

x−∆x
∆x

]
∆x

which (we recall) is equivalent to the
master equation:

P t+∆t
x =

P t
x −2DP t

x
∆t

(∆x)2+DP t
x−∆x

∆t
(∆x)2+DP t

x+∆x
∆t

(∆x)2.



Wave Equation

The partial differential equation govern-
ing wave motion is:

∂2P
∂t2 = c2∂2P

∂x2 .

Applying the finite difference approxi-
mations for ∂2P

∂t2 |x,t and ∂2P
∂x2 |x,t yields:

P t+∆t
x −2P t

x +P t−∆t
x

(∆t)2 ≈ c2
(

P t
x+∆x−2P t

x +P t
x−∆x

(∆x)2

)
.

Solving for P t+∆t
x gives the following

update formula:
P t+∆t

x =−P t−∆t
x +

2

[
1− c2

(
∆t
∆x

)2
]

P t
x +c2

(
∆t
∆x

)2(
P t

x+∆x+P t
x−∆x

)
.



First Order in Time

Unfortunately, this formula is second-
order in time. To derive a formula which
is first-order in time, we recall that

∂2P
∂t2 |x,t =

∂P
∂t

∣∣
x,t+∆t−

∂P
∂t

∣∣
x,t

∆t
+O[∆t].

Replacing ∂P
∂t |x,t+∆t with P t+∆t

x −P t
x

∆t and us-
ing the resulting expression for ∂2P

∂t2 |x,t
and a centered difference approximation
for ∂2P

∂x2 |x,t in the wave equation yields:
P t+∆t

x −P t
x

∆t − ∂P
∂t

∣∣
x,t

∆t
≈ c2

(
P t

x+∆x−2P t
x +P t

x−∆x

(∆x)2

)
.

Multiplying both sides by ∆t:
P t+∆t

x −P t
x

∆t
−Ṗ t

x ≈ c2 ∆t
(∆x)2

(
P t

x+∆x−2P t
x +P t

x−∆x

)
.



First Order in Time (contd.)

Multiplying both sides by ∆t again, and
then adding P t

x and ∆tṖ t
x to both sides

yields:

P t+∆t
x ≈ P t

x +∆tṖ t
x

+c2
(

∆t
∆x

)2(
P t

x+∆x−2P t
x +P t

x−∆x

)
which can be rearranged to give an up-
date equation for P which is first-order
in time:

P t+∆t
x =

[
1−2c2

(
∆t
∆x

)2
]

P t
x +∆tṖ t

x

+c2
(

∆t
∆x

)2(
P t

x+∆x+P t
x−∆x

)
.



First Order in Time (contd.)

To derive an update equation for Ṗ which
is also first-order in time, we once again
begin with

∂2P
∂t2 |x,t =

∂P
∂t

∣∣
x,t+∆t−

∂P
∂t

∣∣
x,t

∆t
+O[∆t].

Using the above and a centered differ-
ence approximation for ∂2P

∂x2 |x,t in the wave
equation results in:

∂P
∂t

∣∣
x,t+∆t−

∂P
∂t

∣∣
x,t

∆t
≈ c2

(
P t

x+∆x−2P t
x +P t

x−∆x

(∆x)2

)
.

Writing Ṗ t
x for ∂P

∂t |x,t yields the follow-
ing update equation for Ṗ:

Ṗ t+∆t
x = Ṗ t

x +c2 ∆t
(∆x)2

(
P t

x+∆x−2P t
x +P t

x−∆x

)
.

We observe that the update equations
for both P and Ṗ are first-order in time.


