Random Walk on Circle
Imagine a Markov process governing the random motion of a particle on a circular lattice:

The particle moves to the right or left with probability γ and stays where it is with probability $1-2 \gamma$.
$\underline{\text { Random Walk on Circle (contd.) }}$
The random walk can be defined as follows:

$$
p_{t+1}(i)=\sum_{j=0}^{N-1} p_{t+1 \mid t}(i \mid j) p_{t}(j)
$$

where

$$
\begin{aligned}
& p_{t+1 \mid t}(i \mid j)=\left\{\begin{array}{cl}
(1-2 \gamma) & \text { if } i=j \\
\gamma & \text { if } i=j \pm 1 \bmod N \\
0 & \text { otherwise. }
\end{array}\right. \\
& \text { and } i, j \in\{0,1, \ldots, N-1\} .
\end{aligned}
$$

$\underline{\text { Random Walk on Circle (contd.) }}$
Because Markov processes are linear, the distribution at time $t+1$ can be computed from the distribution at time t by matrix vector product:

$$
\mathbf{x}^{(t+1)}=\mathbf{P x}^{(t)} .
$$

Because the random walk is shift-invariant, the transition matrix \mathbf{P} is circulant:
$\mathbf{P}=\left[\begin{array}{cccccc}(1-2 \gamma) & \gamma & 0 & \ldots & 0 & \gamma \\ \gamma & (1-2 \gamma) & \gamma & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \gamma & 0 & 0 & \ldots & \gamma(1-2 \gamma)\end{array}\right]$

Diffusion in the Frequency Domain

Since \mathbf{P} is circulant, it is diagonalized by the DFT:

$$
\mathbf{P}=\mathbf{W} \Lambda \mathbf{W}^{*}
$$

where the matrix Λ contains the eigenvalues of \mathbf{P} on its diagonal:

$$
\Lambda=\left[\begin{array}{ccccc}
\lambda_{0} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{1} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda_{N-1}
\end{array}\right]
$$

Diffusion in the Frequency Domain (contd.)

Multiplying both sides of this expression by \mathbf{W}^{*} yields

$$
\begin{aligned}
\mathbf{P} & =\mathbf{W} \Lambda \mathbf{W}^{*} \\
\mathbf{W}^{*} \mathbf{P} & =\mathbf{W}^{*} \mathbf{W} \Lambda \mathbf{W}^{*} \\
\mathbf{W}^{*} \mathbf{P} & =\Lambda \mathbf{W}^{*} \\
\mathbf{W}^{*} \mathbf{p}_{0} & =\Lambda \mathbf{w}_{0}^{*}
\end{aligned}
$$

where \mathbf{p}_{0} and \mathbf{w}_{0}^{*} are the first columns of \mathbf{P} and \mathbf{W}^{*}. Since $\mathbf{w}_{0}^{*}=\frac{1}{\sqrt{N}}$ and Λ is diagonal, it follows that

$$
\begin{aligned}
{\left[\begin{array}{c}
(1-2 \gamma) \\
\gamma \\
0 \\
\vdots \\
0 \\
\gamma
\end{array}\right] } & =\frac{1}{\sqrt{N}}\left[\begin{array}{c}
\lambda_{0} \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]+\frac{1}{\sqrt{N}}\left[\begin{array}{c}
0 \\
\lambda_{1} \\
0 \\
\vdots \\
0
\end{array}\right]+\cdots+\frac{1}{\sqrt{N}}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\lambda_{N-1}
\end{array}\right] \\
& =\frac{1}{\sqrt{N}}\left[\begin{array}{c}
\lambda_{0} \\
\lambda_{1} \\
\vdots \\
\lambda_{N-1}
\end{array}\right]
\end{aligned}
$$

Diffusion in the Frequency Domain (contd.)

We see that the eigenvalues are \sqrt{N} times the DFT of P's first column:
$\lambda_{m}=\gamma e^{-j 2 \pi m \frac{1}{N}}+(1-2 \gamma)+\gamma e^{-j 2 \pi m \frac{(N-1)}{N}}$.
Because $-(N-1) \bmod N$ and $-1=(N-$ 1) $\bmod N$ are conjugate frequencies

$$
e^{-j 2 \pi m \frac{(N-1)}{N}}+e^{-j 2 \pi m m_{N}^{1}}=2 \cos \left(2 \pi m \frac{(N-1)}{N}\right) .
$$

Since $\gamma<1 / 2$ and

$$
0<\cos \left(2 \pi m \frac{(N-1)}{N}\right)<1
$$

for $0<m<N-1$, it follows that $\lambda_{0}=1$ and $0<\lambda_{m}<1$ for $m>0$.

Diffusion in the Frequency Domain (contd.)

The update equation for the Markov process looks like this:

$$
\mathbf{x}^{(t+1)}=\mathbf{W} \Lambda \mathbf{W}^{*} \mathbf{x}^{(t)}
$$

Because Λ is diagonal, higher powers of \mathbf{P} are easy to compute:

$$
\mathbf{P}^{t}=\mathbf{W} \Lambda^{t} \mathbf{W}^{*}
$$

where

$$
\Lambda^{t}=\left[\begin{array}{ccccc}
\lambda_{0}^{t} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{1}^{t} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda_{N-1}^{t}
\end{array}\right]
$$

Significantly, given an initial distribution, $\mathbf{x}^{(0)}$, the distribution at any future time, $\mathbf{x}^{(t)}$, can be computed by evaluating:

$$
\mathbf{x}^{(t)}=\mathbf{W} \Lambda^{t} \mathbf{W}^{*} \mathbf{x}^{(0)}
$$

Limiting Distribution of Diffusion Process

Taking the limit as t goes to infinity yields
$\lim _{t \rightarrow \infty} \mathbf{x}^{(t)}=\lim _{t \rightarrow \infty} \mathbf{W} \Lambda^{t} \mathbf{W}^{*} \mathbf{x}^{(0)}$

$$
=\lim _{t \rightarrow \infty}\left(\sum_{m=0}^{N-1} \lambda_{m}^{t} \mathbf{w}_{m} \mathbf{w}_{m}^{\mathrm{H}}\right) \mathbf{x}^{(0)}
$$

where H is conjugate transpose. Since $\lambda_{0}=1$ and $\lim _{t \rightarrow \infty} \lambda_{m}=0$ for $m \neq 0$ it follows that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathbf{x}^{(t)} & =\mathbf{w}_{0} \mathbf{w}_{0}^{\mathrm{H}} \mathbf{x}^{(0)} \\
& =\frac{1}{N} \mathbf{1}
\end{aligned}
$$

because $\mathbf{w}_{0}=\frac{1}{\sqrt{N}} \mathbf{1}$, and $\sum_{n=0}^{n-1} x_{n}=1$. We see that probability mass is uniformly distributed among the sites in the ring.

Diffusion Equation

The following expression for P_{x}^{t+1} in terms of P_{x}^{t}, P_{x+1}^{t}, and P_{x-1}^{t} is termed the master equation for the diffusion process:

$$
P_{x}^{t+1}=P_{x}^{t}-2 \gamma P_{x}^{t}+\gamma P_{x-1}^{t}+\gamma P_{x+1}^{t}
$$

where $2 \gamma P_{x}^{t}$ is the probability mass which leaves P_{x}^{t} in one step and $\gamma P_{x-1}^{t}+\gamma P_{x+1}^{t}$ is the probability mass which enters P_{x}^{t} in one step.

Diffusion Equation (contd.)
The above expression for $\Delta t=\Delta x=1$ can be generalized for arbitrary Δt and Δx by defining $\gamma=D \frac{\Delta t}{(\Delta x)^{2}}$:

$$
P_{x}^{t+\Delta t}=P_{x}^{t}-
$$

$\underbrace{2 D P_{x}^{t} \frac{\Delta t}{(\Delta x)^{2}}}_{\text {out }}+\underbrace{D P_{x-\Delta x}^{t} \frac{\Delta t}{(\Delta x)^{2}}+D P_{x+\Delta x}^{t} \frac{\Delta t}{(\Delta x)^{2}}}_{\text {in }}$
where D is termed the diffusion constant. Solving for $\left(P_{x}^{t+\Delta t}-P_{x}^{t}\right) / \Delta t$ yields:

$$
\begin{aligned}
& \left(P_{x}^{t+\Delta t}-P_{x}^{t}\right) / \Delta t \\
= & \left(D P_{x+\Delta x}^{t}-2 D P_{x}^{t}+D P_{x-\Delta x}^{t}\right) /(\Delta x)^{2} \\
= & \left(D P_{x+\Delta x}^{t}-D P_{x}^{t}+D P_{x-\Delta x}^{t}-D P_{x}^{t}\right) /(\Delta x)^{2}
\end{aligned}
$$

Diffusion Equation (contd.)

$$
\begin{aligned}
& \left(P_{x}^{t+\Delta t}-P_{x}^{t}\right) / \Delta t \\
= & D\left(P_{x+\Delta x}^{t}-P_{x}^{t}+P_{x-\Delta x}^{t}-P_{x}^{t}\right) /(\Delta x)^{2} \\
= & D\left[\left(P_{x+\Delta x}^{t}-P_{x}^{t}\right)-\left(P_{x}^{t}-P_{x-\Delta x}^{t}\right)\right] /(\Delta x)^{2}
\end{aligned}
$$

which can be rewritten as follows:

$$
\frac{P_{x}^{t+\Delta t}-P_{x}^{t}}{\Delta t}=D \frac{\left[\frac{P_{x+\Delta x}^{t}-P_{x}^{t}}{\Delta x}-\frac{P_{x}^{t}-P_{x-\Delta x}^{t}}{\Delta x}\right]}{\Delta x} .
$$

Diffusion Equation (contd.)

Taking the limit as $\Delta x=\Delta t \rightarrow 0:$
 yields a partial differential equation (PDE):

$$
\frac{\partial P}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}}
$$

which is known as the diffusion equation.

Green's Function

$$
\begin{aligned}
\frac{\partial P(x, t)}{\partial t} & =\frac{\partial^{2} P(x, t)}{\partial x^{2}} \\
\frac{\partial\left(\frac{1}{\sqrt{4 \pi t}} e^{-x^{2} / 4 t}\right)}{\partial t} & =\frac{\partial^{2}\left(\frac{1}{\sqrt{4 \pi t}} e^{-x^{2} / 4 t}\right)}{\partial x^{2}} \\
\frac{\left(x^{2}-2 t\right) e^{-x^{2} / 4 t}}{8 \sqrt{\pi} t^{5 / 2}} & =\frac{\left(x^{2}-2 t\right) e^{-x^{2} / 4 t}}{8 \sqrt{\pi} t^{5 / 2}}
\end{aligned}
$$

Finite Difference Approximation of $\frac{\partial P}{\partial x}$
The value of the function, P, at the point, $(x+\Delta x, t)$, can be expressed as a Taylor series expansion about the point, (x, t), as follows:

$$
\begin{gathered}
P_{x+\Delta x}^{t}=P_{x}^{t}+ \\
\left.\Delta x \frac{\partial P}{\partial x}\right|_{x, t}+\left.\frac{(\Delta x)^{2}}{2!} \frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}+\mathrm{O}\left[(\Delta x)^{3}\right] .
\end{gathered}
$$

By rearranging the above, we derive the forward difference approximation for $\left.\frac{\partial P}{\partial x}\right|_{x, t}$:

$$
\frac{P_{x+\Delta x}^{t}-P_{x}^{t}}{\Delta x}=\left.\frac{\partial P}{\partial x}\right|_{x, t}+\mathrm{O}[\Delta x] .
$$

Backward Difference Approximation of $\frac{\partial P}{\partial x}$
The value of the function, P, at the point, $(x-\Delta x, t)$, can be expressed as a Taylor series expansion about the point, (x, t), as follows:

$$
\begin{gathered}
P_{x-\Delta x}^{t}=P_{x}^{t}- \\
\left.\Delta x \frac{\partial P}{\partial x}\right|_{x, t}+\left.\frac{(-\Delta x)^{2}}{2!} \frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}+\mathrm{O}\left[(\Delta x)^{3}\right] .
\end{gathered}
$$

By rearranging the above, we derive the backward difference approximation for $\left.\frac{\partial P}{\partial x}\right|_{x, t}$:

$$
\frac{P_{x}^{t}-P_{x-\Delta x}^{t}}{\Delta x}=\left.\frac{\partial P}{\partial x}\right|_{x, t}+\mathrm{O}[\Delta x] .
$$

Centered Difference Approximation of $\frac{\partial P}{\partial x}$

$$
\begin{gathered}
P_{x+\Delta x}^{t}=P_{x}^{t}+ \\
\left.\Delta x \frac{\partial P}{\partial x}\right|_{x, t}+\left.\frac{(\Delta x)^{2}}{2!} \frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}+\left.\frac{(\Delta x)^{3}}{3!} \frac{\partial^{3} P}{\partial x^{3}}\right|_{x, t}+\mathrm{O}\left[(\Delta x)^{4}\right] \\
P_{x-\Delta x}^{t}=P_{x}^{t}- \\
\left.\Delta x \frac{\partial P}{\partial x}\right|_{x, t}+\left.\frac{(-\Delta x)^{2}}{2!} \frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}+\left.\frac{(-\Delta x)^{3}}{3!} \frac{\partial^{3} P}{\partial x^{3}}\right|_{x, t}+\mathrm{O}\left[(\Delta x)^{4}\right]
\end{gathered}
$$

Subtracting $P_{x-\Delta x}^{t}$ from $P_{x+\Delta x}^{t}$ yields:

$$
\begin{aligned}
& P_{x+\Delta x}^{t}-P_{x-\Delta x}^{t}=\left.2 \Delta x \frac{\partial P}{\partial x}\right|_{x, t}+ \\
& \left.2 \frac{(-\Delta x)^{3}}{3!} \frac{\partial^{3} P}{\partial x^{3}}\right|_{x, t}+\mathrm{O}\left[(\Delta x)^{4}\right] .
\end{aligned}
$$

Centered Difference Approx. of $\frac{\partial P}{\partial x}$ (contd.)

This can be rearranged to yield the centered difference approximation for $\frac{\partial P}{\partial x}$:

$$
\frac{P_{x+\Delta x}^{t}-P_{x-\Delta x}^{t}}{2 \Delta x}=\left.\frac{\partial P}{\partial x}\right|_{x, t}+\mathrm{O}\left[(\Delta x)^{2}\right] .
$$

Notice that the centered difference approximation is second order accurate.

Finite Difference Approximation of $\frac{\partial^{2} P}{\partial x^{2}}$
The value of the function, $\partial P / \partial x$, at the point, $(x+\Delta x, t)$, can be expressed as a Taylor series expansion about the point, (x, t), as follows:

$$
\begin{gathered}
\left.\frac{\partial P}{\partial x}\right|_{x+\Delta x, t}=\left.\frac{\partial P}{\partial x}\right|_{x, t}+ \\
\left.\Delta x \frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}+\left.\frac{(\Delta x)^{2}}{2!} \frac{\partial^{3} P}{\partial x^{3}}\right|_{x, t}+\mathrm{O}\left[(\Delta x)^{3}\right] .
\end{gathered}
$$

Given the above we can derive the forward difference approximation for $\left.\frac{\partial^{2} P}{\partial x^{2}} \right\rvert\, x, t$:

$$
\frac{\left.\frac{\partial P}{\partial x}\right|_{x+\Delta x, t}-\left.\frac{\partial P}{\partial x}\right|_{x, t}}{\Delta x}=\left.\frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}+\mathrm{O}[\Delta x] .
$$

Finite Difference Approx. of $\frac{\partial^{2} P}{\partial x^{2}}$ (contd.)
For reasons of symmetry, we approximate $\left.\frac{\partial P}{\partial x}\right|_{x+\Delta x, t}$ and $\left.\frac{\partial P}{\partial x}\right|_{x, t}$ using backward differences:

$$
\begin{aligned}
& \frac{\left[\frac{P_{x+\Delta x^{t}}^{t}-P_{x}^{t}}{\Delta x}-\frac{P_{x}^{t}-P_{x-\Delta x}^{t}}{\Delta x}\right]}{\Delta x}= \\
& \left.\frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}+\mathrm{O}[\Delta x] .
\end{aligned}
$$

Combining terms yields the following expression for $\left.\frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}$:

$$
\begin{gathered}
\frac{P_{x+\Delta x}^{t}-2 P_{x}^{t}+P_{x-\Delta x}^{t}}{(\Delta x)^{2}}= \\
\left.\frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}+\mathrm{O}[\Delta x] .
\end{gathered}
$$

Diffusion Equation (reprise)

Applying the finite difference approximations we've derived to the diffusion equation:

$$
\frac{\partial P}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}}
$$

yields

$$
\frac{P_{x}^{t+\Delta t}-P_{x}^{t}}{\Delta t}=D\left(\frac{P_{x+\Delta x}^{t}-2 P_{x}^{t}+P_{x-\Delta x}^{t}}{(\Delta x)^{2}}\right)
$$

which can be re-arranged to yield:

$$
\frac{P_{x}^{t+\Delta t}-P_{x}^{t}}{\Delta t}=D \frac{\left[\frac{P_{x+\Delta x}^{t}-P_{x}^{t}}{\Delta x}-\frac{P_{x}^{t}-P_{x-\Delta x}^{t}}{\Delta x}\right]}{\Delta x}
$$

which (we recall) is equivalent to the master equation:

$$
P_{x}^{t+\Delta t}=
$$

$P_{x}^{t}-2 D P_{x}^{t} \frac{\Delta t}{(\Delta x)^{2}}+D P_{x-\Delta x}^{t} \frac{\Delta t}{(\Delta x)^{2}}+D P_{x+\Delta x}^{t} \frac{\Delta t}{(\Delta x)^{2}}$.

Wave Equation
The partial differential equation governing wave motion is:

$$
\frac{\partial^{2} P}{\partial t^{2}}=c^{2} \frac{\partial^{2} P}{\partial x^{2}} .
$$

Applying the finite difference approximations for $\left.\frac{\partial^{2} P}{\partial t^{2}}\right|_{x, t}$ and $\left.\frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}$ yields:
$\frac{P_{x}^{t+\Delta t}-2 P_{x}^{t}+P_{x}^{t-\Delta t}}{(\Delta t)^{2}} \approx c^{2}\left(\frac{P_{x+\Delta x}^{t}-2 P_{x}^{t}+P_{x-\Delta x}^{t}}{(\Delta x)^{2}}\right)$.
Solving for $P_{x}^{t+\Delta t}$ gives the following update formula:

$$
P_{x}^{t+\Delta t}=-P_{x}^{t-\Delta t}+
$$

$2\left[1-c^{2}\left(\frac{\Delta t}{\Delta x}\right)^{2}\right] P_{x}^{t}+c^{2}\left(\frac{\Delta t}{\Delta x}\right)^{2}\left(P_{x+\Delta x}^{t}+P_{x-\Delta x}^{t}\right)$.

First Order in Time
Unfortunately, this formula is secondorder in time. To derive a formula which is first-order in time, we recall that

$$
\left.\frac{\partial^{2} P}{\partial t^{2}}\right|_{x, t}=\frac{\left.\frac{\partial P}{\partial t}\right|_{x, t+\Delta t}-\left.\frac{\partial P}{\partial t}\right|_{x, t}}{\Delta t}+\mathrm{O}[\Delta t] .
$$

Replacing $\left.\frac{\partial P}{\partial t}\right|_{x, t+\Delta t}$ with $\frac{P_{x}^{t+\Delta t}-P_{x}^{t}}{\Delta t}$ and using the resulting expression for $\left.\frac{\partial^{2} P}{\partial t^{2}}\right|_{x, t}$ and a centered difference approximation for $\left.\frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}$ in the wave equation yields:

$$
\frac{\frac{P_{x}^{t+\Delta t}-P_{x}^{t}}{\Delta t}-\left.\frac{\partial P}{\partial t}\right|_{x, t}}{\Delta t} \approx c^{2}\left(\frac{P_{x+\Delta x}^{t}-2 P_{x}^{t}+P_{x-\Delta x}^{t}}{(\Delta x)^{2}}\right) .
$$

Multiplying both sides by Δt :

$$
\frac{P_{x}^{t+\Delta t}-P_{x}^{t}}{\Delta t}-\dot{P}_{x}^{t} \approx c^{2} \frac{\Delta t}{(\Delta x)^{2}}\left(P_{x+\Delta x}^{t}-2 P_{x}^{t}+P_{x-\Delta x}^{t}\right) .
$$

First Order in Time (contd.)
Multiplying both sides by Δt again, and then adding P_{x}^{t} and $\Delta t \dot{t}_{x}^{t}$ to both sides yields:

$$
\begin{gathered}
P_{x}^{t+\Delta t} \approx P_{x}^{t}+\Delta t \dot{P}_{x}^{t} \\
+c^{2}\left(\frac{\Delta t}{\Delta x}\right)^{2}\left(P_{x+\Delta x}^{t}-2 P_{x}^{t}+P_{x-\Delta x}^{t}\right)
\end{gathered}
$$

which can be rearranged to give an update equation for P which is first-order in time:

$$
\begin{aligned}
& P_{x}^{t+\Delta t}=\left[1-2 c^{2}\left(\frac{\Delta t}{\Delta x}\right)^{2}\right] P_{x}^{t}+\Delta t \dot{P}_{x}^{t} \\
& \quad+c^{2}\left(\frac{\Delta t}{\Delta x}\right)^{2}\left(P_{x+\Delta x}^{t}+P_{x-\Delta x}^{t}\right) .
\end{aligned}
$$

First Order in Time (contd.)
To derive an update equation for \dot{P} which is also first-order in time, we once again begin with

$$
\left.\frac{\partial^{2} P}{\partial t^{2}}\right|_{x, t}=\frac{\left.\frac{\partial P}{\partial t}\right|_{x, t+\Delta t}-\left.\frac{\partial P}{\partial t}\right|_{x, t}}{\Delta t}+\mathrm{O}[\Delta t] .
$$

Using the above and a centered difference approximation for $\left.\frac{\partial^{2} P}{\partial x^{2}}\right|_{x, t}$ in the wave equation results in:

$$
\frac{\left.\frac{\partial P}{\partial t}\right|_{x, t+\Delta t}-\left.\frac{\partial P}{\partial t}\right|_{x, t}}{\Delta t} \approx c^{2}\left(\frac{P_{x+\Delta x}^{t}-2 P_{x}^{t}+P_{x-\Delta x}^{t}}{(\Delta x)^{2}}\right) .
$$

Writing \dot{P}_{x}^{t} for $\left.\frac{\partial P}{\partial t}\right|_{x, t}$ yields the following update equation for \dot{P} :
$\dot{P}_{x}^{t+\Delta t}=\dot{P}_{x}^{t}+c^{2} \frac{\Delta t}{(\Delta x)^{2}}\left(P_{x+\Delta x}^{t}-2 P_{x}^{t}+P_{x-\Delta x}^{t}\right)$.
We observe that the update equations for both P and \dot{P} are first-order in time.

