The Dirac delta function

There Is a function called thaul se:

_[Oif |t| >3
n(t) = { 1 otherwise

Note that the area of the pulse is one. Theac
delta function (a.k.a. thempulse) can be de-
fined using the pulse as follows:
1t
O(t) = alﬂogn (E) '
The impulse can be thought of as the limit of

a pulse as its width goes to zero and its area is
normalized to one.



Properties of the Dirac delta function

The Dirac delta function obeys the following
two properties:

e integral property

€

lim [ J(t)dt=1
€

e—0/_

e Sifting property

/ f(T)o(t—1)d



Impulse response function

In the continuum, the output of a linear shift
Invariant system is given by the convolution in-
tegral:

y(t) = /_ O;X(T)h(t _1)dr.

Since functions remain unchanged by convolu-
tion with the impulse:

/ f(T)o(t —T)dt

we say that the impulse is thdentity function
of linear shift invariant operators.



System identification

Let’s say we have an unknown linear shift in-
variant systemi.e., a black boxy :

H

X(t) — y(t)
where

y(t) = /_ ZX(T)h(t _1)dr.

e Question How do we find the functionh,
which characterizes the linear shift invariant

system?
e Answer Feed it an impulse and see what comes

out:
3(t) = ?



System identification (contd.)

By commutativity and the sifting property we
see that:

/6 h(t—Tt)dt =
/ h(1)3(t —T)dT = h(t).
It follows that:
3(t) = h(t).

For this reasom is called thampul se response
function. The impulse response is the first of
two ways to characterize a linear shift invariant
system.



Impulse Response of Shift Operator

To identify the impulse response function of the
shift operatorsa, we apply the shift operator to
an impulse and see what comes out:

5(.) =% 8((.) —A).

We conclude thad((.) — A) is the impulse re-
sponse of the shift operator. It follows that to
apply sa to a functionf we can convolvef

with &((.) —
/ f(1)o((t—1)—A)dt

/f'l' (t—A—T1)dt
(t—A).



Impulse Response af Operator

To identify the impulse response function of the
differentiation operatot,], we apply the differ-
entiation operator to an impulse and see what
comes out:

5(.) — &(.).
We conclude thad'(.), the derivative of an im-
pulse, is the impulse response of the differenta-
tion operator. It follows that to apply] to a
function f, we can convolvd with &'(.):

(1) = /: (1) (t — T)d.



Harmonic signals

A harmonic signal, ex@g2mnst), is a complex
function of a real variablet. The real part is

a cosine:
Re(e/?™) = cog 2t )
and the imaginary part is a sine:
Im(e™) = sin(2rt).



The transfer function

Let x5(t) andys(t) be the input and output func-
tions of a linear shift invariant system, .

H

Xs(t) — Ys(t).

We observe that the output functiop(t), can
be written as a product of the input function
Xs(t) and a functiorH (s,t) defined as follows:

Ys(t)
Xs(t)

H(st) =
Consequently,

Xs(t) —— H(s,t)xs(t).

Since the above holds for any input function,
Xs(t), it holds whenxg(t) = exp(j2rst):

e?™ L, H(s t)el?™,
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Figure 2: Harmonic signals visualized as space cuffiRe(t),Im(t)].
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The transfer function (contd.)

Now let’s shift the input:
ejZT[s(t—T) N H (S,t o T>ej2T[S(t—T).

As expected, the output is shifted by the same
amount. But notice that

ej2T[s(t—T) _ ejZT[SIe—jZT[ST
_ e—jZT[STejZT[SI

wheree 2™ s just a (complex) constant.



The transfer function (contd.)

Linearity tells us the effect of multiplying the
iInput of a linear shift invariant system by a con-
stant:

loxs(t) —— kys(t)
so that

g 122 1, om 2T (g 1) el 2
or
el 2=t 2, H (s t)elZst-1),
We can only conclude that
H(s,t —1) =H(st).
Observe thaH (s;t) is independent df



Eigenfunctions

It follows that the effect of applying a linear
shift invariant operato# to a harmonic signal

ej2T[St L) H (S)ejZT[st

IS to multiply it by a complex constaikt(s) de-
pendent only on frequency This multiplica-
tion can change the amplitude and phase of the
harmonic signal, but not its frequency.



Eigenfunctions (contd.)

Written somewhat differently, the effect of a
linear shift invariant operatot on a harmonic
signal is:

H(s)e)™ = 4 {e“™}
or
H (s)ei2e — / 7St —1)d.

Observe the similarity between the above and
the familiar equation relating eigenvectgiand
eigenvalue\; of matrix A:

)\iXi = AX;

or

Ai(Xi)j = ZAjk(Xi)k'

Because of this similarity, we say that harmonic
signals are theigenfunctions of linear shift in-
variant systemse!?™ is like an eigenvector and
H(s) is like an eigenvalue.



The transfer function (contd.)

Next week, we will see that (almost) any func-
tion f can be uniguely decomposed into a weightec
sum of harmonic signals.e., eigenfunctions of

H

f(t) :/ F (s)e/“™ds.
F Is called theourier transform of f.



The transfer function (contd.)

For the moment, we won’t consider the prob-
lem of how to computé-. We simply observe
that in the basis of eigenfunctions af, each
component (s) of the representation df(t) is
modulated by a complex constahk(s):

/H (s)e!“™ds = /f h(t —1)dt.

Like the impulse response functidm,thetrans-
fer function, H, completely specifies the behav-
lor of the linear shift invariant operator .



The transfer function (contd.)

e Question What is the relationship between
the impulse response functidm,and the trans-
fer function,H?

e Answer H is the Fourier transform df:
h(t) :/ H(s)e)*™ds.



