The Dirac delta function

There is a function called the *pulse*:

$$\Pi(t) = \begin{cases} 0 & \text{if } |t| > \frac{1}{2} \\ 1 & \text{otherwise.} \end{cases}$$

Note that the area of the pulse is one. The *Dirac delta* function (a.k.a. the *impulse*) can be defined using the pulse as follows:

$$\delta(t) = \lim_{\varepsilon \longrightarrow 0} \frac{1}{\varepsilon} \Pi\left(\frac{t}{\varepsilon}\right).$$

The impulse can be thought of as the limit of a pulse as its width goes to zero and its area is normalized to one.

Properties of the Dirac delta function

The Dirac delta function obeys the following two properties:

• *integral property*

$$\lim_{\varepsilon \longrightarrow 0} \int_{-\varepsilon}^{\varepsilon} \delta(t) dt = 1$$

• sifting property

$$f(t) = \int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d\tau.$$

Impulse response function

In the continuum, the output of a linear shift invariant system is given by the convolution integral:

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau.$$

Since functions remain unchanged by convolution with the impulse:

$$f(t) = \int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d\tau$$

we say that the impulse is the *identity function* of linear shift invariant operators.

Let's say we have an unknown linear shift invariant system, *i.e.*, a black box, \mathcal{H} :

$$x(t) \xrightarrow{\mathcal{H}} y(t)$$

where

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau.$$

- Question How do we find the function, *h*, which characterizes the linear shift invariant system?
- **Answer** Feed it an impulse and see what comes out:

$$\delta(t) \xrightarrow{\mathcal{H}} ?$$

System identification (contd.)

By commutativity and the sifting property we see that:

$$\int_{-\infty}^{\infty} \delta(\tau) h(t-\tau) d\tau = \int_{-\infty}^{\infty} h(\tau) \delta(t-\tau) d\tau = h(t).$$

It follows that:

$$\delta(t) \xrightarrow{\mathcal{H}} h(t).$$

For this reason, *h* is called the *impulse response function*. The impulse response is the first of two ways to characterize a linear shift invariant system.

Impulse Response of Shift Operator

To identify the impulse response function of the shift operator, s_{Δ} , we apply the shift operator to an impulse and see what comes out:

$$\delta(.) \xrightarrow{s_{\Delta}} \delta((.) - \Delta).$$

We conclude that $\delta((.) - \Delta)$ is the impulse response of the shift operator. It follows that to apply s_{Δ} to a function f, we can convolve f with $\delta((.) - \Delta)$:

$$f_{\Delta}(t) = \int_{-\infty}^{\infty} f(\tau) \delta((t-\tau) - \Delta) d\tau$$

= $\int_{-\infty}^{\infty} f(\tau) \delta(t - \Delta - \tau) d\tau$
= $f(t - \Delta).$

Impulse Response of ∇ Operator

To identify the impulse response function of the differentiation operator, ∇ , we apply the differentiation operator to an impulse and see what comes out:

$$\delta(.) \xrightarrow{\nabla} \delta'(.).$$

We conclude that $\delta'(.)$, the derivative of an impulse, is the impulse response of the differentation operator. It follows that to apply ∇ to a function *f*, we can convolve *f* with $\delta'(.)$:

$$f'(t) = \int_{-\infty}^{\infty} f(\tau) \delta'(t-\tau) d\tau.$$

Harmonic signals

A harmonic signal, $\exp(j2\pi st)$, is a complex function of a real variable, *t*. The real part is a cosine:

$$\operatorname{Re}(e^{j2\pi st}) = \cos(2\pi st)$$

and the imaginary part is a sine:

$$\operatorname{Im}(e^{j2\pi st}) = \sin(2\pi st).$$

The transfer function

Let $x_s(t)$ and $y_s(t)$ be the input and output functions of a linear shift invariant system, \mathcal{H} :

$$x_s(t) \xrightarrow{\mathcal{H}} y_s(t).$$

We observe that the output function, $y_s(t)$, can be written as a product of the input function $x_s(t)$ and a function H(s,t) defined as follows:

$$H(s,t)=\frac{y_s(t)}{x_s(t)}.$$

Consequently,

$$x_s(t) \xrightarrow{\mathcal{H}} H(s,t)x_s(t).$$

Since the above holds for any input function, $x_s(t)$, it holds when $x_s(t) = \exp(j2\pi st)$:

$$e^{j2\pi st} \xrightarrow{\mathcal{H}} H(s,t)e^{j2\pi st}.$$

Figure 1: $\operatorname{Re}(t)$ (solid) and $\operatorname{Im}(t)$ (dashed) for harmonic signals. (a) $\exp(j2\pi t)$. (b) $\exp(-j2\pi t)$. (c) $\exp(j2\pi 3t)$. (d) $\exp(-j2\pi 3t)$. (e) $\exp(j2\pi 12t)$. (f) $\exp(-j2\pi 12t)$.

Figure 2: Harmonic signals visualized as space curve, [Re(t), Im(t)]. (a) $\exp(j2\pi t)$. (b) $\exp(-j2\pi t)$. (c) $\exp(j2\pi 3t)$. (d) $\exp(-j2\pi 3t)$. (e) $\exp(j2\pi 12t)$. (f) $\exp(-j2\pi 12t)$.

Now let's shift the input:

$$e^{j2\pi s(t-\tau)} \xrightarrow{\mathcal{H}} H(s,t-\tau)e^{j2\pi s(t-\tau)}.$$

As expected, the output is shifted by the same amount. But notice that

$$e^{j2\pi s(t-\tau)} = e^{j2\pi st}e^{-j2\pi s\tau}$$
$$= e^{-j2\pi s\tau}e^{j2\pi s\tau}$$

where $e^{-j2\pi s\tau}$ is just a (complex) constant.

The transfer function (contd.)

Linearity tells us the effect of multiplying the input of a linear shift invariant system by a constant:

$$kx_s(t) \xrightarrow{\mathcal{H}} ky_s(t)$$

so that

$$e^{-j2\pi s\tau}e^{j2\pi s\tau} \xrightarrow{\mathcal{H}} e^{-j2\pi s\tau}H(s,t)e^{j2\pi s\tau}$$

or

$$e^{j2\pi s(t-\tau)} \xrightarrow{\mathcal{H}} H(s,t)e^{j2\pi s(t-\tau)}.$$

We can only conclude that

$$H(s,t-\tau)=H(s,t).$$

Observe that H(s,t) is independent of t!

Eigenfunctions

It follows that the effect of applying a linear shift invariant operator \mathcal{H} to a harmonic signal

$$e^{j2\pi st} \xrightarrow{\mathcal{H}} H(s)e^{j2\pi st}$$

is to multiply it by a complex constant H(s) dependent only on frequency s. This multiplication can change the amplitude and phase of the harmonic signal, but not its frequency.

Eigenfunctions (contd.)

Written somewhat differently, the effect of a linear shift invariant operator \mathcal{H} on a harmonic signal is:

$$H(s)e^{j2\pi st} = \mathcal{H}\left\{e^{j2\pi st}\right\}$$

or

$$H(s)e^{j2\pi st} = \int_{-\infty}^{\infty} e^{j2\pi s\tau} h(t-\tau)d\tau.$$

Observe the similarity between the above and the familiar equation relating eigenvector \mathbf{x}_i and eigenvalue λ_i of matrix **A**:

$$\lambda_i \mathbf{x}_i = \mathbf{A} \mathbf{x}_i$$

or

$$\lambda_i(\mathbf{x}_i)_j = \sum_k A_{jk}(\mathbf{x}_i)_k.$$

Because of this similarity, we say that harmonic signals are the *eigenfunctions* of linear shift invariant systems. $e^{j2\pi st}$ is like an eigenvector and H(s) is like an eigenvalue.

The transfer function (contd.)

Next week, we will see that (almost) any function f can be uniquely decomposed into a weighted sum of harmonic signals, *i.e.*, eigenfunctions of \mathcal{H} :

$$f(t) = \int_{-\infty}^{\infty} F(s) e^{j2\pi st} ds.$$

F is called the *Fourier transform* of f.

The transfer function (contd.)

For the moment, we won't consider the problem of how to compute *F*. We simply observe that in the basis of eigenfunctions of \mathcal{H} , each component F(s) of the representation of f(t) is modulated by a complex constant, H(s):

$$\int_{-\infty}^{\infty} H(s)F(s)e^{j2\pi st}ds = \int_{-\infty}^{\infty} f(\tau)h(t-\tau)d\tau.$$

Like the impulse response function, h, the *transfer function*, H, completely specifies the behavior of the linear shift invariant operator \mathcal{H} .

- Question What is the relationship between the impulse response function, *h*, and the transfer function, *H*?
- **Answer** *H* is the Fourier transform of *h*:

$$h(t) = \int_{-\infty}^{\infty} H(s) e^{j2\pi st} ds.$$