Histogram Equalization

Last time we derived an expression for f_Y in terms of g', g^{-1} and f_X when Y = g(X):

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{g'(g^{-1}(y))}.$$

A *uniform random variable*, *U*, has the following p.d.f.:

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Does there exist a g, which will transform a random variable, X, with p.d.f., f_X , into a uniform random variable, U, with p.d.f., f_U ?

Histogram Equalization (contd.)

We start by setting the expression for f_Y equal to the expression for f_U :

$$\frac{f_X(g^{-1}(u))}{g'(g^{-1}(u))} = \begin{cases} 1 & \text{if } 0 < u < 1\\ 0 & \text{otherwise} \end{cases}$$

and multiplying both sides by $f_X(g^{-1}(u))$

$$g'(g^{-1}(u)) = f_X(g^{-1}(u))$$
 if $0 < u < 1$.

Histogram Equalization (contd.)

After substituting *v* for $g^{-1}(u)$ and g(v) for *u* we have

$$g'(v) = f_X(v)$$
 if $0 < g(v) < 1$.

Integrating both sides of the equation:

 $\int_0^x g'(v) dv = \int_0^x f_X(v) dv \text{ if } 0 < g(0 \le v \le x) < 1.$

Since $0 < F_X(0 \le v \le x) < 1$, we see that

$$g(x)=F_X(x)$$

where F_X is the cumulative distribution function.

Example

Let *X* be a continuous random variable with p.d.f.:

$$f_X(x) = \frac{1}{\tau} e^{-x/\tau}$$

and c.d.f.:

$$F_X(x') = \int_0^{x'} \frac{1}{\tau} e^{-\frac{x}{\tau}} dx$$
$$= -e^{-\frac{x}{\tau}} \Big|_0^{x'}$$
$$= 1 - e^{-\frac{x'}{\tau}}$$

If U is a continuous random variable such that:

$$u=F_X(x)=1-e^{-\frac{x}{\tau}}$$

then $f_U(u)$ is uniform:

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise.} \end{cases}$$

The Other Direction

Does there exist a g, which will transform a uniform random variable, U, into a random variable, X, with p.d.f., f_X ?

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Since

$$u=F_X(x)$$

it follows that:

$$x = F_X^{-1}(u)$$

where F_X is the cumulative distribution function and F_X^{-1} is the *inverse cumulative distribution function*.

Example

Let *U* be a uniform random variable with p.d.f.:

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise} \end{cases}$$

and let *X* be an exponential random variable with p.d.f.:

$$f_X(x) = \frac{1}{\tau} e^{-\frac{x}{\tau}}$$

and c.d.f.:

$$F_X(x')=1-e^{-\frac{x'}{\tau}},$$

.

then samples of u can be transformed into samples of x as follows:

$$x = F_X^{-1}(u) = -\tau \ln(1-u).$$

Histogram Matching

Let *X* and *Y* be random variables with p.d.f.'s f_X and f_Y . Is there a function, *g*, which will transform samples of *X* so that they have the same distribution as *Y*? The c.d.f., F_X , transforms the ran-

dom variable, X, into the uniform random variable, U:

$$u=F_X(x)$$

where

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise.} \end{cases}$$

The inverse c.d.f., F_Y^{-1} , transforms the uniform random variable, U, into the random variable, Y:

$$y = F_Y^{-1}(u).$$

Histogram Matching (contd.)

It follows that

$$y = g(x) = F_Y^{-1}(F_X(x)).$$