Histogram Equalization

Last time we derived an expression for f_Y in terms of g', g^{-1} and f_X when $Y = g(X)$:

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{g'(g^{-1}(y))}.$$

A uniform random variable, U, has the following p.d.f.:

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Does there exist a g, which will transform a random variable, X, with p.d.f., f_X, into a uniform random variable, U, with p.d.f., f_U?
Histogram Equalization (contd.)

We start by setting the expression for f_Y equal to the expression for f_U:

\[
\frac{f_X(g^{-1}(u))}{g'(g^{-1}(u))} = \begin{cases}
1 \text{ if } 0 < u < 1 \\
0 \text{ otherwise }
\end{cases}
\]

and multiplying both sides by $g'(g^{-1}(u))$

\[
f_X(g^{-1}(u)) = g'(g^{-1}(u)) \text{ if } 0 < u < 1.
\]
Histogram Equalization (contd.)

After substituting v for $g^{-1}(u)$ and $g(v)$ for u we have

$$g'(v) = f_X(v) \text{ if } 0 < g(v) < 1.$$

Integrating both sides of the equation:

$$\int_0^x g'(v) dv = \int_0^x f_X(v) dv \text{ if } 0 < g(0 \leq v \leq x) < 1.$$

Since $F'_X(v) = f_X(v)$ and $0 < F_X(0 \leq v \leq x) < 1$, we see that

$$g(x) = F_X(x)$$

where F_X is the cumulative distribution function.
Example

Let X be a continuous random variable with p.d.f.:

$$f_X(x) = \frac{1}{\tau}e^{-x/\tau}$$

and c.d.f.:

$$F_X(x') = \int_0^{x'} \frac{1}{\tau}e^{-x/\tau}dx$$

$$= -e^{-x'/\tau} \bigg|_0^{x'}$$

$$= 1 - e^{-x'/\tau}$$

If U is a continuous random variable such that:

$$u = F_X(x) = 1 - e^{-x/\tau}$$

then $f_U(u)$ is uniform:

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise.} \end{cases}$$
The Other Direction

Does there exist a g, which will transform a uniform random variable, U, into a random variable, X, with p.d.f., f_X?

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Since

$$u = F_X(x)$$

it follows that:

$$x = F_X^{-1}(u)$$

where F_X is the cumulative distribution function and F_X^{-1} is the inverse cumulative distribution function.
Example

Let U be a uniform random variable with p.d.f.:

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise} \end{cases}$$

and let X be an exponential random variable with p.d.f.:

$$f_X(x) = \frac{1}{\tau} e^{-\frac{x}{\tau}}$$

and c.d.f.:

$$F_X(x') = 1 - e^{-\frac{x'}{\tau}},$$

then samples of u can be transformed into samples of x as follows:

$$x = F_X^{-1}(u) = -\tau \ln(1 - u).$$
Histogram Matching

Let X and Y be r.v.’s with p.d.f.’s f_X and f_Y. Is there a function, g, which will transform samples of X so that they have the same distribution as Y?
Histogram Matching (contd.)

Recall that the c.d.f., F_X, transforms the r.v., X, into the uniform r.v., U:

$$u = F_X(x)$$

where

$$f_U(u) = \begin{cases} 1 & \text{if } 0 < u < 1 \\ 0 & \text{otherwise}. \end{cases}$$

The inverse c.d.f., F_Y^{-1}, transforms the uniform r.v., U, into the r.v., Y:

$$y = F_Y^{-1}(u).$$

It follows that

$$y = g(x) = F_Y^{-1}(F_X(x)).$$
Figure 1: The slope of the c.d.f. F_X is equal to the p.d.f. f_X. Where the slope exceeds one, the c.d.f. dilates the p.d.f., decreasing its density. Conversely, where the slope is less than one, the c.d.f. contracts the p.d.f., increasing its density.
Figure 2: Samples of X are transformed to samples of a uniform random variable U using F_X. Samples of the U are then transformed to samples of Y using F_Y^{-1}.