The Fourier Transform

- Introduction
- Orthonormal bases for \mathbb{R}^{n}
- Inner product
- Length
- Orthogonality
- Change of basis
- Matrix transpose
- Complex vectors
- Orthonormal bases for \mathbb{C}^{n}
- Inner product
- Hermitian transpose
- Orthonormal bases for 2π periodic functions
- Shah basis
- Harmonic signal basis
- Fourier series
- Fourier transform

Orthonormal bases for \mathbb{R}^{n}

Let $\mathbf{u}=\left[u_{1}, u_{2}\right]^{\mathrm{T}}$ and $\mathbf{v}=\left[v_{1}, v_{2}\right]^{\mathrm{T}}$ be vectors in \mathbb{R}^{2}. We define the inner product of \mathbf{u} and \mathbf{v} to be

$$
\langle\mathbf{u}, \mathbf{v}\rangle=u_{1} v_{1}+u_{2} v_{2} .
$$

We can use the inner product to define notions of length and angle. The length of \mathbf{u} is given by the square root of the inner product of \mathbf{u} with itself:

$$
\begin{aligned}
|\mathbf{u}| & =\langle\mathbf{u}, \mathbf{u}\rangle^{\frac{1}{2}} \\
& =\sqrt{u_{1}^{2}+u_{2}^{2}}
\end{aligned}
$$

The angle between \mathbf{u} and \mathbf{v} can also be defined in terms of inner product:

$$
\langle\mathbf{u}, \mathbf{v}\rangle=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

where

$$
\theta=\cos ^{-1}\left(\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{|\mathbf{u}||\mathbf{v}|}\right) .
$$

Orthogonality

An important special case occurs when

$$
\langle\mathbf{u}, \mathbf{v}\rangle=|\mathbf{u}||\mathbf{v}| \cos \theta=0
$$

When $\cos \theta$ equals zero, $\theta=\pi / 2=90^{\circ}$.

Orthonormal bases for \mathbb{R}^{n}

Any n orthogonal vectors which are of unit length

$$
\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { otherwise } .
\end{array}\right.
$$

form an orthonormal basis for \mathbb{R}^{n}. Any vector in \mathbb{R}^{n} can be expressed as a weighted sum of \mathbf{u}_{1}, $\mathbf{u}_{2}, \mathbf{u}_{3}, \ldots, \mathbf{u}_{n}$:

$$
\mathbf{v}=w_{1} \mathbf{u}_{1}+w_{2} \mathbf{u}_{2}+w_{3} \mathbf{u}_{3}+\ldots+w_{n} \mathbf{u}_{n} .
$$

- Question How do we find $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$?
- Answer Using inner product.

Example

Consider two orthonormal bases. The first basis is defined by the vectors $\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{u}_{2}=$ $\left[\begin{array}{l}0 \\ 1\end{array}\right]$. It is easy to verify that these two vectors form an orthonormal basis:

$$
\begin{aligned}
& \left\langle\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\rangle=1 \cdot 0+0 \cdot 1=0 \\
& \left\langle\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\rangle=1 \cdot 1+0 \cdot 0=1 \\
& \left\langle\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\rangle=0 \cdot 0+1 \cdot 1=1 .
\end{aligned}
$$

Example (contd.)

The second, by the vectors $\mathbf{u}_{1}^{\prime}=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ and $\mathbf{u}_{2}^{\prime}=\left[\begin{array}{r}-\sin \theta \\ \cos \theta\end{array}\right]$. It is also easy to verify that these two vectors form an orthonormal basis:
$\left\langle\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right],\left[\begin{array}{r}-\sin \theta \\ \cos \theta\end{array}\right]\right\rangle=-\cos \theta \sin \theta+\cos \theta \sin \theta=0$

$$
\begin{gathered}
\left\langle\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right],\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]\right\rangle=\cos ^{2} \theta+\sin ^{2} \theta=1 \\
\left\langle\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right],\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]\right\rangle=\cos ^{2} \theta+\sin ^{2} \theta=1 .
\end{gathered}
$$

Example (contd.)

Let the coefficients of \mathbf{v} in the first basis be w_{1} and w_{2} :

$$
\mathbf{v}=w_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+w_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

What are the coefficients of \mathbf{v} in the second basis? Stated differently, what values of w_{1}^{\prime} and w_{2}^{\prime} satisfy:

$$
\mathbf{v}=w_{1}^{\prime}\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]+w_{2}^{\prime}\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right] ?
$$

Figure 1: Change of basis.
Example (contd.)
To find w_{1}^{\prime} and w_{2}^{\prime}, we use inner product:

$$
\begin{aligned}
& w_{1}^{\prime}=\left\langle\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right],\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right\rangle \\
& w_{2}^{\prime}=\left\langle\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right],\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\right\rangle .
\end{aligned}
$$

Example (contd.)

The above can be written more economically in matrix notation:

$$
\begin{gathered}
{\left[\begin{array}{l}
w_{1}^{\prime} \\
w_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]} \\
\mathbf{w}^{\prime}=\mathbf{A w} .
\end{gathered}
$$

If the rows of \mathbf{A} are orthonormal, then \mathbf{A} is an orthonormal matrix. Multiplying by an orthonormal matrix effects a change of basis. A change of basis between two orthonormal bases is a rotation.

Matrix transpose

If \mathbf{A} rotates \mathbf{w} by θ

$$
\mathbf{A}=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

then $\mathbf{A}^{-1}=\mathbf{A}^{\mathrm{T}}$ rotates \mathbf{w}^{\prime} by $-\theta$

$$
\mathbf{A}^{\mathrm{T}}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

In other words, \mathbf{A}^{T} undoes the action of \mathbf{A}, i.e., they are inverses:

$$
\begin{aligned}
\mathbf{A} \mathbf{A}^{\mathrm{T}} & =\left[\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & \cos \theta \sin \theta-\sin \theta \cos \theta \\
\cos \theta \sin \theta-\sin \theta \cos \theta & \cos ^{2} \theta+\sin ^{2} \theta
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

For orthonormal matrices, multiplying by the transpose undoes the change of basis.

Complex vectors in \mathbb{C}^{2}

$\mathbf{v}=\left[a_{1} e^{i \theta_{1}}, a_{2} e^{i \theta_{2}}\right]^{\mathrm{T}}$ is a vector in \mathbb{C}^{2}.

- Question Can we define length and angle in \mathbb{C}^{2} just like in \mathbb{R}^{2} ?
- Answer Yes, but we need to redefine inner product:

$$
\langle\mathbf{u}, \mathbf{v}\rangle=u_{1}^{*} v_{1}+u_{2}^{*} v_{2} .
$$

Note that this reduces to the inner product for \mathbb{R}^{2} when \mathbf{u} and \mathbf{v} are real. The norm of a complex vector is the square root of the sum of the squares of the amplitudes. For example, for $\mathbf{v} \in \mathbb{C}^{2}$:

$$
\begin{aligned}
|\mathbf{u}| & =\langle\mathbf{u}, \mathbf{u}\rangle^{\frac{1}{2}} \\
& =\sqrt{u_{1}^{*} u_{1}+u_{2}^{*} u_{2}} .
\end{aligned}
$$

Orthonormal bases for \mathbb{C}^{n}

- Question How about orthonormal bases for \mathbb{C}^{n}, do they exist?
- Answer Yes. If $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=0$ when $i \neq j$ and $\left\langle\mathbf{u}_{i}, \mathbf{u}_{j}\right\rangle=1$ when $i=j$, then the \mathbf{u}_{i} form an orthonormal basis for \mathbb{C}^{n}.
- Question Do complex orthonormal matrices exist?
- Answer Yes, except they are called unitary matrices and $\left(\mathbf{A}^{*}\right)^{\mathrm{T}}$ undoes the action of \mathbf{A}. That is

$$
\mathbf{A}\left(\mathbf{A}^{*}\right)^{\mathrm{T}}=\mathbf{I}
$$

where $\left(\mathbf{A}^{*}\right)^{\mathrm{T}}=\mathbf{A}^{\mathrm{H}}$ is the Hermitian transpose of \mathbf{A}.

The space of 2π periodic functions

A function, f, is 2π periodic iff $f(t)=f(t+$ $2 \pi)$. We can think of two complex 2π periodic functions, e.g., f and g, as infinite dimensional complex vectors. Length, angle, orthogonality, and rotation (i.e., change of basis) still have meaning. All that is required is that we generalize the definition of inner product:

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f^{*}(t) g(t) d t
$$

The length (i.e., the norm) of a function is:

$$
|f|=\langle f, f\rangle^{\frac{1}{2}}=\sqrt{\int_{-\pi}^{\pi} f^{*}(t) f(t) d t}
$$

Two functions, f and g, are orthogonal when

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f^{*}(t) g(t) d t=0
$$

Scaling Property of the Impulse

The area of an impulse scales just like the area of a pulse, i.e., contracting an impulse by a factor of a changes its area by a factor of $\frac{1}{|a|}$:

$$
\int_{-\infty}^{\infty} \Pi(a t) d t=\frac{1}{|a|}=\lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{\varepsilon} \delta(a t) d t
$$

It follows that:

$$
\lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{\varepsilon}|a| \delta(a t) d t=\lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{\varepsilon} \delta(t) d t=1
$$

Since the impulse is defined by the above integral property, we conclude that:

$$
|a| \delta(a t)=\delta(t)
$$

Shah basis

The Shah function is a train of impulses:

$$
\mathrm{III}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n)
$$

We can use the scaling property of the impulse to define a 2π periodic Shah function:

$$
\begin{aligned}
\frac{1}{2 \pi} \mathrm{III}\left(\frac{t}{2 \pi}\right) & =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \delta\left(\frac{t}{2 \pi}-n\right) \\
& =\frac{2 \pi}{2 \pi} \sum_{n=-\infty}^{\infty} \delta\left(2 \pi\left(\frac{t}{2 \pi}-n\right)\right) \\
& =\sum_{n=-\infty}^{\infty} \delta(t-2 \pi n) .
\end{aligned}
$$

Shah basis (contd.)

Consider the infinite set of 2π periodic Shah functions, $\frac{1}{2 \pi} \operatorname{III}\left(\frac{t-\tau}{2 \pi}\right)$, for $-\pi \leq \tau<\pi$. Because $\frac{1}{2 \pi} \operatorname{III}\left(\frac{t-\tau}{2 \pi}\right)=\delta(t-\tau)$ for $-\pi \leq t \leq \pi$ it follows that

$$
\begin{gathered}
\left\langle\frac{1}{2 \pi} \mathrm{III}\left(\frac{t-\tau_{1}}{2 \pi}\right), \frac{1}{2 \pi} \operatorname{III}\left(\frac{t-\tau_{2}}{2 \pi}\right)\right\rangle \\
=\int_{-\pi}^{\pi} \delta\left(t-\tau_{1}\right) \delta\left(t-\tau_{2}\right) d t
\end{gathered}
$$

equals 0 when $\tau_{1} \neq \tau_{2}$ and equals $\int_{-\pi}^{\pi} \delta\left(t-\tau_{1}\right) d t=$ 1 when $\tau_{1}=\tau_{2}$. It follows that the infinite set of 2π periodic Shah functions, $\frac{1}{2 \pi} \operatorname{III}\left(\frac{t-\tau}{2 \pi}\right)$, for $-\pi \leq \tau<\pi$ form an orthonormal basis for the space of 2π periodic functions.
$\operatorname{III}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n)$

$$
\frac{1}{2 \pi} \operatorname{III}\left(\frac{t-\tau}{2 \pi}\right)=\sum_{n=-\infty}^{\infty} \delta(t-\tau-n 2 \pi)
$$

Figure 2: Making a 2π periodic Shah function.

Shah basis (contd.)

- Question How do we find the coefficients, $w(\tau)$, representing $f(t)$ in the Shah basis? How do we find $w(\tau)$ such that

$$
f(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} w(\tau) \mathrm{III}\left(\frac{t-\tau}{2 \pi}\right) d \tau ?
$$

- Answer Take inner products of f with the infinite set of 2π periodic Shah functions:

$$
w(\tau)=\left\langle\frac{1}{2 \pi} \operatorname{III}\left(\frac{t-\tau}{2 \pi}\right), f(t)\right\rangle .
$$

Shah basis (contd.)

Because $\frac{1}{2 \pi} \operatorname{III}\left(\frac{t-\tau}{2 \pi}\right)=\delta(t-\tau)$ for $-\pi \leq t \leq \pi$ it follows that

$$
\begin{aligned}
w(\tau) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \operatorname{III}\left(\frac{t-\tau}{2 \pi}\right) d t \\
& =\int_{-\pi}^{\pi} f(t) \delta(t-\tau) d t
\end{aligned}
$$

which by the sifting property of the impulse is just:

$$
w(\tau)=f(\tau)
$$

We see that the coefficients of f in the Shah basis are just f itself!

Harmonic signal basis

- Question How long is a harmonic signal?
- Answer The length of a harmonic signal is

$$
\begin{aligned}
\left|e^{j \omega t}\right| & =\left\langle e^{j \omega t}, e^{j \omega t}\right\rangle^{\frac{1}{2}} \\
& =\left(\int_{-\pi}^{\pi} e^{-j \omega t} e^{j \omega t} d t\right)^{\frac{1}{2}} \\
& =\left(\int_{-\pi}^{\pi} d t\right)^{\frac{1}{2}} \\
& =\sqrt{2 \pi} .
\end{aligned}
$$

Harmonic signal basis (contd.)

- Question What is the angle between two harmonic signals with integer frequencies?
- Answer The angle between two harmonic signals with integer frequencies is

$$
\begin{aligned}
\left\langle e^{j \omega_{1} t}, e^{j \omega_{2} t}\right\rangle & =\int_{-\pi}^{\pi} e^{-j \omega_{1} t} e^{j \omega_{2} t} d t \\
& =\left.\left[\frac{e^{j\left(\omega_{2}-\omega_{1}\right) t}}{j\left(\omega_{2}-\omega_{1}\right)}\right]\right|_{-\pi} ^{\pi}
\end{aligned}
$$

Since this function is the same at $-\pi$ and π (for all integers ω_{1} and ω_{2}), we conclude that

$$
\left\langle e^{j \omega_{1} t}, e^{j \omega_{2} t}\right\rangle=0
$$

when ω_{1} and ω_{2} are integers and $\omega_{1} \neq \omega_{2}$.

Fourier Series of 2π Periodic Functions

It follows that the infinite set of harmonic signals, $\frac{1}{\sqrt{2 \pi}} e^{j \omega t}$ for integer ω and $-\infty \leq \omega \leq \infty$ form an orthonormal basis for the space of 2π periodic functions.

- Question What are the coefficients of f in the harmonic signal basis?
- Answer Take inner products of f with the infinite set of harmonic signals.

This is the analysis formula for Fourier series:

$$
\begin{aligned}
F(\omega) & =\left\langle\frac{1}{\sqrt{2 \pi}} e^{j \omega t}, f\right\rangle \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} f(t) e^{-j \omega t} d t
\end{aligned}
$$

for integer frequency, ω.

Fourier Series of 2π Periodic Functions (contd.)

The function can be reconstructed using the synthesis formula for Fourier series:

$$
f(t)=\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-\infty}^{\infty} F(\omega) e^{j \omega t}
$$

Fourier Series Example

The Fourier series for the Shah basis function

$$
f(t)=\frac{1}{2 \pi} \mathrm{III}\left(\frac{t}{2 \pi}\right)
$$

is

$$
\begin{aligned}
F(\omega) & =\left\langle\frac{1}{\sqrt{2 \pi}} e^{j \omega t}, \frac{1}{2 \pi} \operatorname{III}\left(\frac{t}{2 \pi}\right)\right\rangle \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \delta(t) e^{j \omega t} d t \\
& =\frac{1}{\sqrt{2 \pi}}
\end{aligned}
$$

Consequently

$$
\begin{aligned}
f(t) & =\frac{1}{\sqrt{2 \pi}} \sum_{\omega=-\infty}^{\infty} F(\omega) e^{j \omega t} \\
& =\frac{1}{2 \pi} \sum_{\omega=-\infty}^{\infty} e^{j \omega t}
\end{aligned}
$$

Deep Thought

The analysis formula for Fourier series effects a change of basis. It is a rotation in the space of 2π periodic functions. The synthesis formula undoes the change of basis. It is the opposite rotation.

Figure 3: $\operatorname{Re}(t)$ (solid) and $\operatorname{Im}(t)$ (dashed) of truncated Fourier series for Shah basis function. (a) $-1 \leq \omega \leq 1$ (b) $-2 \leq \omega \leq 2$ (c) $-4 \leq \omega \leq 4$ (d) $-8 \leq \omega \leq 8$ (e) $-16 \leq \omega \leq 16$ (f) $-32 \leq \omega \leq 32$.

Figure 4: $\operatorname{Re}(t)$ (solid) and $\operatorname{Im}(t)$ (dashed) of truncated Fourier series for Shah basis function. (a) $-64 \leq \omega \leq 64$ (b) $-128 \leq \omega \leq 128$ (c) $-256 \leq \omega \leq 256$ (d) $-512 \leq \omega \leq 512$ (e) $-1024 \leq \omega \leq$ 1024 (f) $-2048 \leq \omega \leq 2048$.

Fourier Series of T-Periodic Functions

A function, f, is T-periodic iff $f(t)=f(t+T)$.

- Analysis formula

$$
\begin{aligned}
F(\omega) & =\left\langle\frac{\sqrt{2 \pi}}{T} e^{j 2 \pi \omega t / T}, f\right\rangle \\
& =\frac{\sqrt{2 \pi}}{T} \int_{-T / 2}^{T / 2} f(t) e^{-j 2 \pi \omega t / T} d t
\end{aligned}
$$

for integer frequency, ω.

- Synthesis formula

$$
f(t)=\frac{\sqrt{2 \pi}}{T} \sum_{\omega=-\infty}^{\infty} F(\omega) e^{j 2 \pi \omega t / T}
$$

Observe that if we substitute $T=2 \pi$ in the above expressions, we get the formulas for 2π periodic functions.

The Fourier Transform

Functions with finite length are termed square integrable.

$$
\begin{aligned}
|f| & =\sqrt{\int_{-\infty}^{\infty}|f(t)|^{2} d t} \\
& =\sqrt{\int_{-\infty}^{\infty} f^{*}(t) f(t) d t} \\
& <\infty .
\end{aligned}
$$

For square integrable functions, we can take the limit of the Fourier series for T-periodic functions as $T \rightarrow \infty$, in which case, it is possible to show that...

The Fourier Transform (contd.)

- Analysis formula

$$
\begin{aligned}
F(s) & =\left\langle e^{j 2 \pi s t}, f\right\rangle \\
& =\int_{-\infty}^{\infty} f(t) e^{-j 2 \pi s t} d t
\end{aligned}
$$

- Synthesis formula

$$
f(t)=\int_{-\infty}^{\infty} F(s) e^{j 2 \pi s t} d s
$$

