Frames vs. Bases

- A set of vectors form a *basis* for \mathbb{R}^M if they span \mathbb{R}^M and are linearly independent.

- A set of $N \geq M$ vectors form a *frame* for \mathbb{R}^M if they span \mathbb{R}^M.
Basis Matrix

Let \mathcal{B} consist of the M basis vectors, $\mathbf{b}_1 \ldots \mathbf{b}_N \in \mathbb{R}^M$. Let $\mathbf{x} \in \mathbb{R}^M$ be a representation of $\mathbf{y} \in \mathbb{R}^M$ in \mathcal{B}. It follows that

$$\mathbf{y} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \cdots + x_M \mathbf{b}_M.$$

This is just the matrix vector product

$$\mathbf{y} = \mathbf{B} \mathbf{x}$$

where the basis matrix, \mathbf{B}, is the $M \times M$ matrix,

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \ldots & \mathbf{b}_M \end{bmatrix}.$$
Inverse Basis Matrix

To find the representation of the vector y in the basis \mathcal{B} we multiply y by B^{-1}:

$$x = B^{-1}y.$$

The components of the representation of y in \mathcal{B} are inner products of y with the rows of B^{-1}. The transposes of these row vectors form a dual basis $\tilde{\mathcal{B}}$.
Figure 1: Primal \mathcal{B} (right) and dual $\tilde{\mathcal{B}}$ (left) bases and standard basis (center). The vectors which comprise $\tilde{\mathcal{B}}$ are the transposes of the rows of \mathbf{B}^{-1}.
Frame Matrix

Let \mathcal{F} consist of the N frame vectors, $f_1 \ldots f_N \in \mathbb{R}^M$, where $N \geq M$. Let $x \in \mathbb{R}^N$ be a representation of $y \in \mathbb{R}^M$ in \mathcal{F}. It follows that

$$\mathbf{y} = x_1 f_1 + x_2 f_2 + \cdots + x_N f_N.$$

This is just the matrix vector product

$$\mathbf{y} = \mathbf{F} \mathbf{x}$$

where the *frame matrix*, \mathbf{F}, is the $M \times N$ matrix,

$$\mathbf{F} = \begin{bmatrix} f_1 & f_2 & \ldots & f_N \end{bmatrix}.$$
Inverse Frame Matrix (contd.)

We might guess that

\[x = F^{-1}y \]

where \(FF^{-1} = I \). Unfortunately, because \(F \) is not square, it has no simple inverse. However, it has an infinite number of *right-inverses*. Each of the \(x \) produced when \(y \) is multiplied by a distinct right-inverse is a distinct representation of the vector \(y \) in the frame, \(F \).
Pseudoinverse

We observe that the pseudoinverse

\[F^+ = F^T (FF^T)^{-1} \]

is a right-inverse of \(F \). We call the \(N \times M \) matrix, \(F^+ \), an inverse frame matrix because it maps vectors, \(y \in \mathbb{R}^M \), into representations, \(x \in \mathbb{R}^N \).
Frame Bounds

Let \mathcal{F} consist of the N frame vectors, $f_1 \ldots f_N \in \mathbb{R}^M$, where $N \geq M$, and let F^+ be the inverse frame matrix. \mathcal{F} is a frame iff for all $y \in \mathbb{R}^M$ there exist A and B where $0 < A \leq B < \infty$ and where

$$\frac{1}{B} \|y\|^2 \leq \|F^+y\|^2 \leq \frac{1}{A} \|y\|^2.$$

A and B are called the frame bounds.
Dual Frame

If \mathcal{F} consists of the N frame vectors, $\mathbf{f}_1\ldots\mathbf{f}_N \in \mathbb{R}^M$, with inverse frame matrix \mathbf{F}^+, then the dual frame, \mathcal{F}, consists of the N frame vectors, $\tilde{\mathbf{f}}_1\ldots\tilde{\mathbf{f}}_N \in \mathbb{R}^M$:

$$(\mathbf{F}^+)^\top = \begin{bmatrix} \tilde{\mathbf{f}}_1 & \tilde{\mathbf{f}}_2 & \ldots & \tilde{\mathbf{f}}_N \end{bmatrix}.$$

Let $\tilde{\mathbf{x}} \in \mathbb{R}^N$ be a representation of $\mathbf{y} \in \mathbb{R}^M$ in \mathcal{F}. It follows that

$$\mathbf{y} = (\mathbf{F}^+)^\top \tilde{\mathbf{x}}.$$

Consequently, $(\mathbf{F}^+)^\top$ is the frame matrix for the dual frame, \mathcal{F}.
The vectors which comprise \tilde{F} are the transposes of the rows of F^+.

Figure 2: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) frames and standard basis (center).
Dual Frame (contd.)

Because F^T is a right inverse of $(F^+)^T$:

$$(F^+)^T F^T = I.$$

It follows that F^T is the inverse frame matrix for the dual frame, \tilde{F}, and

$$A\|y\|^2 \leq \|F^Ty\|^2 \leq B\|y\|^2,$$

for all $y \in \mathbb{R}^M$.
Example

What is the representation of $y = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ in the frame formed by the vectors $f_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}^T$, $f_1 = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}^T$ and $f_3 = \begin{bmatrix} 0 & -1 \end{bmatrix}^T$?

$F = \begin{bmatrix} 0.70711 & -0.70711 & 0 \\ 0.70711 & 0.70711 & -1 \end{bmatrix}$

$F^+ = \begin{bmatrix} 0.70711 & 0.35355 \\ -0.70711 & 0.35355 \\ 0 & -0.5 \end{bmatrix}$

$F^+ y = \begin{bmatrix} 1.06066 \\ -0.35355 \\ -0.5 \end{bmatrix}$
Tight-Frames

If $A = B$ then

$$||F^T y||^2 = A||y||^2$$

and F is said to be a tight-frame. When F is a tight-frame,

$$F^+ = \frac{1}{A} F^T.$$

If $||f_i|| = 1$ for all frame vectors, f_i, then A equals the overcompleteness of the representation. When $A = B = 1$, then F is an orthonormal basis and $F = \tilde{F}$.
Figure 3: Primal \mathcal{F} (right) and dual \mathcal{F}' (left) tight-frames with overcompleteness two and standard basis (center).
Example

What is the representation of \(y = \begin{bmatrix} 1 & 1 \end{bmatrix}^T \) in the frame formed by the vectors \(f_1 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T, f_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T, f_3 = \begin{bmatrix} 0 & -1 \end{bmatrix}^T \) and \(f_4 = \begin{bmatrix} -1 & 0 \end{bmatrix}^T \)?

\[
\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}
\]

\[
\mathbf{F}^+ = \frac{1}{2} \mathbf{F}^T = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \\ 0 & -0.5 \\ -0.5 & 0 \end{bmatrix}
\]

\[
\frac{1}{2} \mathbf{F}^T y = \begin{bmatrix} 0.5 \\ 0.5 \\ -0.5 \\ -0.5 \end{bmatrix}
\]
Figure 4: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) tight-frames with overcompleteness one (orthonormal bases) and standard basis (center).
Summary of Notation

- $y \in \mathbb{R}^M$ – a vector.
- $x \in \mathbb{R}^N$ – a representation of y in \mathcal{F}.
- $f_1 \ldots f_N \in \mathbb{R}^M$ where $N \geq M$ – frame vectors for \mathcal{F}.
- $F = \begin{bmatrix} f_1 & f_2 & \ldots & f_N \end{bmatrix}$ – frame matrix for \mathcal{F}.
- $F : \mathbb{R}^N \rightarrow \mathbb{R}^M$.
- $F^+ = F^T (F^T F)^{-1}$ – inverse frame matrix for \mathcal{F}.
- $F^+ : \mathbb{R}^M \rightarrow \mathbb{R}^N$.
- $0 < A \leq B < \infty$ – bounds for \mathcal{F}.
Summary of Notation (contd.)

• \(\tilde{x} \in \mathbb{R}^M \) – a representation of \(y \) in \(\tilde{F} \).
• \(\tilde{f}_1 \ldots \tilde{f}_N \in \mathbb{R}^M \) – frame vectors for \(\tilde{F} \).
• \((F^+)^T = \begin{bmatrix} \tilde{f}_1 & \tilde{f}_2 & \ldots & \tilde{f}_N \end{bmatrix} \) – frame matrix for \(\tilde{F} \).
• \((F^+)^T : \mathbb{R}^N \rightarrow \mathbb{R}^M \).
• \(F^T \) – inverse frame matrix for \(\tilde{F} \).
• \(F^T : \mathbb{R}^M \rightarrow \mathbb{R}^N \).
• \(0 < \frac{1}{B} \leq \frac{1}{A} < \infty \) – bounds for \(\tilde{F} \).