DCT Basis Functions

Figure 1: Basis functions of Discrete Cosine Transform (DCT)

Simple Cell Receptive Fields

Figure 2: Cosine (left) and sine gratings (right) in Gaussian envelopes, known as Gabor functions, closely resemble the receptive fields of simple cells in primary visual cortex (V1). Gabor functions at a range of scales and orientations are centered at all positions (x, y) in the visual field.

Figure 3: Cosine Gabor functions of different scales, $\log r$, and orientations, θ.

Frames vs. Bases

- A set of vectors form a basis for \mathbb{R}^{M} if they span \mathbb{R}^{M} and are linearly independent.
- A set of $N \geq M$ vectors form a frame for \mathbb{R}^{M} if they span \mathbb{R}^{M}.

Advantages of Frame Representations

- Using bases \mathcal{B} it possible to build sparse, invertible representations.
- Using frames \mathcal{F} it is possible to build sparse, invertible representations that are also Euclidean equivariant.

Euclidean Equivariance
Primary visual cortex uses a frame operator \mathcal{F} to transform an input representation, $I: \mathbb{R}^{2} \rightarrow \mathbb{R}$, into an output representation of higher dimensionality, O : $\mathbb{R}^{2} \times \mathbb{R}^{+} \times \mathbb{S}^{1} \rightarrow \mathbb{R}$:

$$
I\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \xrightarrow{\mathcal{F}} O\left(\left[\begin{array}{c}
x \\
y \\
\log r \\
\theta
\end{array}\right]\right) .
$$

A Euclidean transformation, \mathcal{T}, takes an input representation and returns the same representation rotated, translated and scaled:

$$
I\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \xrightarrow{\mathcal{T}} I\left(\left[\begin{array}{l}
s(x \cos \phi+y \sin \phi)+u \\
s(y \sin \phi-x \cos \phi)+v
\end{array}\right]\right) .
$$

Euclidean Equivariance (contd.)
An operator, \mathcal{F}, is Euclidean equivariant, iff it commutes with \mathcal{T}. This property can be depicted using a commutative diagram:

$$
\begin{array}{ccc}
I & \xrightarrow{\mathcal{T}} & \mathcal{T} I \\
\downarrow \mathcal{F} & & \downarrow \mathcal{F} \\
\mathcal{F} I & \xrightarrow{\mathcal{T}^{\prime}} & O
\end{array}
$$

where \mathcal{T}^{\prime} is the corresponding transformation of the output representation of higher dimensionality:
$O\left(\left[\begin{array}{c}x \\ y \\ \log r \\ \theta\end{array}\right]\right) \xrightarrow{\tau^{\prime}} O\left(\left[\begin{array}{c}s(x \cos \phi+y \sin \phi)+u \\ s(y \sin \phi-x \cos \phi)+v \\ \log r+\log s \\ \theta+\phi\end{array}\right]\right)$.

Synthesis Matrix

Let \mathcal{B} consist of the M basis vectors, $\mathbf{b}_{1} \ldots \mathbf{b}_{M} \in \mathbb{R}^{M}$. Let $\{\mathbf{y}\}_{\mathcal{B}} \in \mathbb{R}^{M}$ be a representation of $\mathbf{y} \in \mathbb{R}^{M}$ in \mathcal{B}. It follows that

$$
\mathbf{y}=\mathbf{B}\{\mathbf{y}\}_{\mathcal{B}}
$$

where the synthesis matrix, \mathbf{B}, is the $M \times$ M matrix,

$$
\mathbf{B}=\left[\mathbf{b}_{1}\left|\mathbf{b}_{2}\right| \ldots \mid \mathbf{b}_{M}\right] .
$$

where \mathbf{b}_{i} is column i of \mathbf{B}.

$\underline{\text { Analysis Matrix }}$

To find the representation of the vector \mathbf{y} in the basis \mathcal{B} we multiply \mathbf{y} by the analysis matrix \mathbf{B}^{-1} :

$$
\{\mathbf{y}\}_{\mathcal{B}}=\mathbf{B}^{-1} \mathbf{y} .
$$

The components of the representation of \mathbf{y} in \mathcal{B} are inner products of \mathbf{y} with the rows of \mathbf{B}^{-1} :

$$
\mathbf{B}^{-1}=\left[\begin{array}{c}
\widetilde{\mathbf{b}}_{1}^{\mathrm{T}} \\
\hline \widetilde{\mathbf{b}}_{2}^{\mathrm{T}} \\
\hline \vdots \\
\widetilde{\mathbf{b}}_{M}^{\mathrm{T}}
\end{array}\right] .
$$

where $\widetilde{\mathbf{b}}_{i}^{\mathrm{T}}$ is row i of \mathbf{B}^{-1}.

Dual Basis

The transposes of these row vectors form a dual basis, $\widetilde{\mathcal{B}}$, with synthesis matrix:

$$
\left(\mathbf{B}^{-1}\right)^{\mathrm{T}}=\left[\widetilde{\mathbf{b}}_{1}\left|\widetilde{\mathbf{b}}_{2}\right| \ldots \mid \widetilde{\mathbf{b}}_{M}\right]
$$

and analysis matrix:

$$
\mathbf{B}^{\mathrm{T}}=\left[\begin{array}{c}
\mathbf{b}_{1}^{\mathrm{T}} \\
\mathbf{b}_{2}^{\mathrm{T}} \\
\hline \vdots \\
\mathbf{b}_{M}^{\mathrm{T}}
\end{array}\right] .
$$

The relationship between the vectors of the primal (\mathcal{B}) and dual $(\widetilde{\mathcal{B}})$ bases is:

$$
\left\langle\mathbf{b}_{i}, \widetilde{\mathbf{b}}_{j}\right\rangle=\delta_{i j}
$$

The biorthogonality of the columns of \mathbf{B} and the rows of \mathbf{B}^{-1} follows immediately from the definition of matrix inverse.

Example
Recall that any $N \times N$ matrix, \mathbf{P}, with N distinct eigenvalues, λ_{i}, can be factored into a product of three matrices:

$$
\mathbf{P}=\mathbf{X} \Lambda \mathbf{Y}^{\mathrm{T}}
$$

where the columns of

$$
\mathbf{X}=\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \ldots \mid \mathbf{x}_{M}\right]
$$

are right eigenvectors satisfying $\lambda_{i} \mathbf{x}_{i}=$ $\mathbf{P} \mathbf{x}_{i}$ and the rows of

$$
\mathbf{Y}^{\mathrm{T}}=\left[\begin{array}{c}
\mathbf{y}_{1}^{\mathrm{T}} \\
\hline \mathbf{y}_{2}^{\mathrm{T}} \\
\hline \vdots \\
\mathbf{y}_{M}^{\mathrm{T}}
\end{array}\right]
$$

are left eigenvectors satisfying $\lambda_{i} \mathbf{y}_{i}^{\mathrm{T}}=$ $\mathbf{y}_{i}^{\mathrm{T}} \mathbf{P}$ and Λ is a diagonal matrix of eigenvalues where $\Lambda_{i i}=\lambda_{i}$.

Example (contd.)
Because \mathbf{X} and \mathbf{Y}^{T} are inverses:

$$
\left\langle\mathbf{x}_{i}, \mathbf{y}_{j}\right\rangle=\delta_{i j}
$$

Consequently, the right and left eigenvectors form primal basis X and dual basis \mathscr{Y}. We take inner products with the left eigenvectors \mathcal{Y} to find the representation in the basis of right eigenvectors X and vice versa.

Figure 4: Primal \mathcal{B} (right) and dual $\tilde{\mathcal{B}}$ (left) bases and standard basis (center). The vectors which comprise $\tilde{\mathcal{B}}$ are the transposes of the rows of \mathbf{B}^{-1}.

Frame Synthesis Matrix
Let \mathcal{F} consist of the N frame vectors, $\mathbf{f}_{1} \ldots \mathbf{f}_{N} \in \mathbb{R}^{M}$, where $N \geq M$. Let $\{\mathbf{y}\}_{\mathcal{F}} \in$ \mathbb{R}^{N} be a representation of $\mathbf{y} \in \mathbb{R}^{M}$ in \mathcal{F}. It follows that

$$
\mathbf{y}=\mathbf{F}\{\mathbf{y}\}_{\mathcal{F}}
$$

where the synthesis matrix, \mathbf{F}, is the $M \times$ N matrix,

$$
\mathbf{F}=\left[\mathbf{f}_{1}\left|\mathbf{f}_{2}\right| \ldots \mid \mathbf{f}_{N}\right] .
$$

Frame Analysis Matrix
We might guess that

$$
\{\mathbf{y}\}_{\mathcal{F}}=\mathbf{F}^{-1} \mathbf{y}
$$

where \mathbf{F}^{-1} is $N \times M$ and $\mathbf{F F}^{-1}=\mathbf{I}$. Unfortunately, because \mathbf{F} is not square, there is no unique inverse. However, \mathbf{F} has an infinite number of right-inverses. Each of the $\{\mathbf{y}\}_{\mathcal{F}}$ produced when \mathbf{y} is multiplied by a distinct right-inverse is a distinct representation of the vector \mathbf{y} in the frame, \mathcal{F}.

Pseudoinverse

The pseudoinverse of \mathbf{F} is

$$
\mathbf{F}^{+}=\mathbf{F}^{\mathrm{T}}\left(\mathbf{F F}^{\mathrm{T}}\right)^{-1}
$$

\mathbf{F}^{+}is a right inverse of \mathbf{F} because

$$
\mathbf{F F}^{+}=\mathbf{F F}^{\mathrm{T}}\left(\mathbf{F F}^{\mathrm{T}}\right)^{-1}=\mathbf{I}
$$

The $N \times M$ matrix, \mathbf{F}^{+}, is as an analysis matrix because it transforms a representation $\mathbf{y} \in \mathbb{R}^{M}$, in the standard basis, into a representation $\{\mathbf{y}\}_{\mathcal{F}} \in \mathbb{R}^{N}$, in the frame, \mathcal{F} :

$$
\{\mathbf{y}\}_{\mathcal{F}}=\mathbf{F}^{+} \mathbf{y}
$$

Dual Frame and Its Synthesis Matrix

If \mathcal{F} consists of the N frame vectors, $\mathbf{f}_{1} \ldots \mathbf{f}_{N} \in \mathbb{R}^{M}$, with analysis matrix \mathbf{F}^{+}, then there exists a dual frame, $\widetilde{\mathcal{F}}$, consisting of the N frame vectors, $\widetilde{\mathbf{f}}_{1} \ldots \widetilde{\mathbf{f}}_{N} \in$ \mathbb{R}^{M} :

$$
\left(\mathbf{F}^{+}\right)^{\mathrm{T}}=\left[\widetilde{\mathbf{f}}_{1}\left|\widetilde{\mathbf{f}}_{2}\right| \ldots \mid \widetilde{\mathbf{f}}_{N}\right] .
$$

Let $\{\mathbf{y}\}_{\tilde{\mathcal{F}}} \in \mathbb{R}^{N}$ be a representation of $\mathbf{y} \in \mathbb{R}^{M}$ in $\widetilde{\mathcal{F}}$. It follows that

$$
\mathbf{y}=\left(\mathbf{F}^{+}\right)^{\mathrm{T}}\{\mathbf{y}\}_{\tilde{\mathcal{F}}} .
$$

and $\left(\mathbf{F}^{+}\right)^{\mathrm{T}}$ is the synthesis matrix for the dual frame, $\widetilde{\mathcal{F}}$.

Dual Frame Analysis Matrix

Because $\mathbf{F F}^{+}=\mathbf{I}$, it follows that \mathbf{F}^{T} is a right inverse of $\left(\mathbf{F}^{+}\right)^{\mathrm{T}}$:

$$
\left(\mathbf{F}^{+}\right)^{\mathrm{T}} \mathbf{F}^{\mathrm{T}}=\mathbf{I} .
$$

Consequently, \mathbf{F}^{T} is an analysis matrix for the dual frame, $\widetilde{\mathcal{F}}$:

$$
\{\mathbf{y}\}_{\tilde{\mathcal{F}}}=\mathbf{F}^{\mathrm{T}} \mathbf{y}
$$

Span of Dual Frame

The N vectors $\widetilde{\mathcal{F}}$ form a frame for \mathbb{R}^{M} iff for every $\mathbf{y} \in \mathbb{R}^{M}$ of finite non-zero length there is a finite non-zero length representation of \mathbf{y} in $\widetilde{\mathcal{F}}$:

$$
A\|\mathbf{y}\|^{2} \leq\left\|\{\mathbf{y}\}_{\tilde{\mathcal{F}}}\right\|^{2} \leq B\|\mathbf{y}\|^{2}
$$

where $0<A \leq B<\infty$.

$\underline{\text { Span of Primal Frame }}$

Because the spans of the $\operatorname{primal}(\mathcal{F})$ and dual $(\widetilde{\mathcal{F}})$ frames are the same, and because

$$
\{\mathbf{y}\}_{\tilde{\mathcal{F}}}=\mathbf{F}^{\mathrm{T}} \mathbf{y}
$$

\mathcal{F} is a frame iff for all $\mathbf{y} \in \mathbb{R}^{M}$ there exist A and B where $0<A \leq B<\infty$ and where

$$
A\|\mathbf{y}\|^{2} \leq\left\|\mathbf{F}^{\mathrm{T}} \mathbf{y}\right\|^{2} \leq B\|\mathbf{y}\|^{2}
$$

A and B are called the frame bounds. This is significant because this is a necessary and sufficient condition for a set of vectors (the columns of \mathbf{F}) to form a frame.

Figure 5: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) frames and standard basis (center). The vectors which comprise $\tilde{\mathcal{F}}$ are the transposes of the rows of \mathbf{F}^{+}.

Example
What is the representation of $\mathbf{y}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$ in the frame formed by the vectors $\mathbf{f}_{1}=$

$$
\mathbf{F}=\left[\begin{array}{rrr}
0.70711 & -0.70711 & 0 \\
0.70711 & 0.70711 & -1
\end{array}\right]
$$

$$
\mathbf{F}^{+}=\left[\begin{array}{rr}
0.70711 & 0.35355 \\
-0.70711 & 0.35355 \\
0 & -0.5
\end{array}\right]
$$

$$
\mathbf{F}^{+} \mathbf{y}=\left[\begin{array}{r}
1.06066 \\
-0.35355 \\
-0.5
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}\right]^{\mathrm{T}}, \mathbf{f}_{2}=\left[-\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}\right]^{\mathrm{T}} \text { and } \mathbf{f}_{3}=} \\
& {[0-1]^{\mathrm{T}} \text { ? }}
\end{aligned}
$$

Tight-Frames

If $A=B$ then

$$
\left\|\mathbf{F}^{\mathrm{T}} \mathbf{y}\right\|^{2}=A\|\mathbf{y}\|^{2}
$$

and \mathcal{F} is said to be a tight-frame. When \mathcal{F} is a tight-frame,

$$
\mathbf{F}^{+}=\frac{1}{A} \mathbf{F}^{\mathrm{T}} .
$$

If $\left\|\mathbf{f}_{i}\right\|=1$ for all frame vectors, \mathbf{f}_{i}, then A equals the overcompleteness of the representation. When $A=B=1$, then \mathcal{F} is an orthonormal basis and $\mathcal{F}=\widetilde{\mathcal{F}}$.

Figure 6: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) tight-frames with overcompleteness two and standard basis (center).

Example

What is the representation of $\mathbf{y}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{\mathrm{T}}$ in the frame formed by the vectors $\mathbf{f}_{1}=$ $\left[\begin{array}{ll}0 & 1\end{array}\right]^{\mathrm{T}}, \mathbf{f}_{2}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\mathrm{T}}, \mathbf{f}_{3}=\left[\begin{array}{ll}0 & -1\end{array}\right]^{\mathrm{T}}$ and $\mathbf{f}_{4}=\left[\begin{array}{ll}-1 & 0\end{array}\right]^{\mathrm{T}}$?

$$
\begin{gathered}
\mathbf{F}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & -1 \\
1 & 0
\end{array}\right] \\
\mathbf{F}^{+}=\frac{1}{2} \mathbf{F}^{\mathrm{T}}=\left[\begin{array}{rr}
0 & 0.5 \\
0.5 & 0 \\
0 & -0.5 \\
-0.5 & 0
\end{array}\right] \\
\frac{1}{2} \mathbf{F}^{\mathrm{T}} \mathbf{y}=\left[\begin{array}{r}
0.5 \\
0.5 \\
-0.5 \\
-0.5
\end{array}\right]
\end{gathered}
$$

Figure 7: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) tight-frames with overcompleteness one (orthonormal bases) and standard basis (center).

Summary of Notation

- $\mathbf{y} \in \mathbb{R}^{M}$ - a vector.
- $\{\mathbf{y}\}_{\mathcal{F}} \in \mathbb{R}^{N}$ - a representation of \mathbf{y} in primal frame \mathcal{F}.
- $\mathbf{f}_{1} \ldots \mathbf{f}_{N} \in \mathbb{R}^{M}$ where $N \geq M$ - frame vectors for primal frame \mathcal{F}.
$\bullet \mathbf{F}=\left[\mathbf{f}_{1}\left|\mathbf{f}_{2}\right| \ldots \mid \mathbf{f}_{N}\right]$ - synthesis matrix for primal frame \mathcal{F}.
- $\mathbf{F}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$.
- $\mathbf{F}^{+}=\mathbf{F}^{\mathrm{T}}\left(\mathbf{F}^{\mathrm{T}} \mathbf{F}\right)^{-1}$ - analysis matrix for primal frame \mathcal{F}.
- $\mathbf{F}^{+}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$.
- $0<A \leq B<\infty$ - bounds for primal frame \mathcal{F}.

Summary of Notation (contd.)

- $\{\mathbf{y}\}_{\tilde{\mathcal{F}}} \in \mathbb{R}^{M}$ - a representation of \mathbf{y} in dual frame $\widetilde{\mathcal{F}}$.
- $\widetilde{\mathbf{f}}_{1} \ldots \widetilde{\mathbf{f}}_{N} \in \mathbb{R}^{M}$ - frame vectors for dual frame $\widetilde{\mathcal{F}}$.
- $\left(\mathbf{F}^{+}\right)^{\mathrm{T}}=\left[\widetilde{\mathbf{f}}_{1}\left|\widetilde{\mathbf{f}}_{2}\right| \ldots \mid \widetilde{\mathbf{f}}_{N}\right]$ - synthesis matrix for dual frame \mathcal{F}.
- $\left(\mathbf{F}^{+}\right)^{\mathrm{T}}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$.
- \mathbf{F}^{T} - analysis matrix for dual frame $\widetilde{\mathcal{F}}$.
- $\mathbf{F}^{\mathrm{T}}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{N}$.
- $0<\frac{1}{B} \leq \frac{1}{A}<\infty-$ bounds for dual frame \mathcal{F}.

