DCT Basis Functions

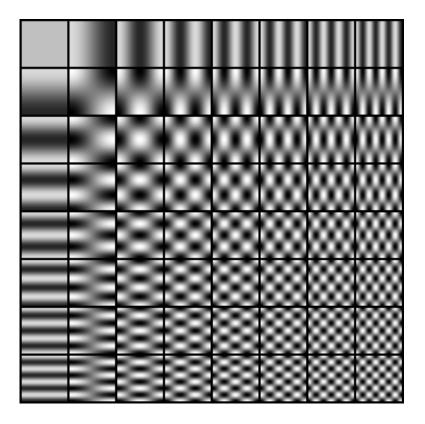


Figure 1: Basis functions of Discrete Cosine Transform (DCT)

Simple Cell Receptive Fields

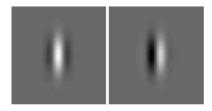


Figure 2: Cosine (left) and sine gratings (right) in Gaussian envelopes, known as *Gabor functions*, closely resemble the receptive fields of simple cells in primary visual cortex (V1). Gabor functions at a range of scales and orientations are centered at all positions (x, y) in the visual field.

-	#	*		- 10	#		
=	#	#			-	"	//
	#	#	=	0	-	"	///
=	-	-		m	-	"	//

Figure 3: Cosine Gabor functions of different scales, $\log r$, and orientations, θ .

Frames vs. Bases

- A set of vectors form a *basis* for \mathbb{R}^M if they span \mathbb{R}^M and are linearly independent.
- A set of $N \ge M$ vectors form a *frame* for \mathbb{R}^M if they span \mathbb{R}^M .

Advantages of Frame Representations

- Using bases \mathcal{B} it possible to build sparse, invertible representations.
- Using frames \mathcal{F} it is possible to build sparse, invertible representations that are also *Euclidean equivariant*.

Euclidean Equivariance

Primary visual cortex uses a frame operator \mathcal{F} to transform an input representation, $I : \mathbb{R}^2 \to \mathbb{R}$, into an output representation of higher dimensionality, O : $\mathbb{R}^2 \times \mathbb{R}^+ \times \mathbb{S}^1 \to \mathbb{R}$:

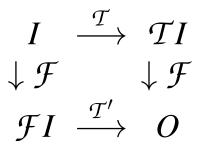
$$I\left(\begin{bmatrix}x\\y\end{bmatrix}\right) \xrightarrow{\mathcal{F}} O\left(\begin{bmatrix}x\\y\\\log r\\\theta\end{bmatrix}\right)$$

A Euclidean transformation, \mathcal{T} , takes an input representation and returns the same representation rotated, translated and scaled:

$$I\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) \xrightarrow{\mathcal{T}} I\left(\begin{bmatrix} s\left(x\cos\phi + y\sin\phi\right) + u \\ s\left(y\sin\phi - x\cos\phi\right) + v \end{bmatrix}\right)$$

Euclidean Equivariance (contd.)

An operator, \mathcal{F} , is Euclidean equivariant, iff it commutes with \mathcal{T} . This property can be depicted using a commutative diagram:



where T' is the corresponding transformation of the *output representation* of higher dimensionality:

$$O\left(\begin{bmatrix}x\\y\\\log r\\\theta\end{bmatrix}\right) \xrightarrow{\mathcal{T}'} O\left(\begin{bmatrix}s\left(x\cos\phi + y\sin\phi\right) + u\\s\left(y\sin\phi - x\cos\phi\right) + v\\\log r + \log s\\\theta + \phi\end{bmatrix}\right)$$

Synthesis Matrix

Let \mathcal{B} consist of the M basis vectors, $\mathbf{b}_1 \dots \mathbf{b}_M \in \mathbb{R}^M$. Let $\{\mathbf{y}\}_{\mathcal{B}} \in \mathbb{R}^M$ be a representation of $\mathbf{y} \in \mathbb{R}^M$ in \mathcal{B} . It follows that

$$\mathbf{y} = \mathbf{B}\{\mathbf{y}\}_{\mathcal{B}}$$

where the synthesis matrix, **B**, is the $M \times M$ matrix,

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_M \end{bmatrix}.$$

where \mathbf{b}_i is column *i* of **B**.

Analysis Matrix

To find the representation of the vector **y** in the basis \mathcal{B} we multiply **y** by the *analysis matrix* **B**⁻¹:

$$\{\mathbf{y}\}_{\mathcal{B}} = \mathbf{B}^{-1}\mathbf{y}.$$

The components of the representation of y in \mathcal{B} are inner products of y with the rows of \mathbf{B}^{-1} :

$$\mathbf{B}^{-1} = \begin{bmatrix} \widetilde{\mathbf{b}}_1^{\mathrm{T}} \\ \overline{\mathbf{b}}_2^{\mathrm{T}} \\ \vdots \\ \widetilde{\mathbf{b}}_M^{\mathrm{T}} \end{bmatrix}$$

where $\widetilde{\mathbf{b}}_i^{\mathrm{T}}$ is row *i* of \mathbf{B}^{-1} .

Dual Basis

The transposes of these row vectors form a *dual basis*, $\widetilde{\mathcal{B}}$, with synthesis matrix:

 $(\mathbf{B}^{-1})^{\mathrm{T}} = \begin{bmatrix} \widetilde{\mathbf{b}}_1 \mid \widetilde{\mathbf{b}}_2 \mid \ldots \mid \widetilde{\mathbf{b}}_M \end{bmatrix}$

and analysis matrix:

$$\mathbf{B}^{\mathrm{T}} = \begin{bmatrix} \mathbf{b}_{1}^{\mathrm{T}} \\ \mathbf{b}_{2}^{\mathrm{T}} \\ \vdots \\ \mathbf{b}_{M}^{\mathrm{T}} \end{bmatrix}$$

The relationship between the vectors of the primal (\mathcal{B}) and dual $(\widetilde{\mathcal{B}})$ bases is:

$$\left\langle \mathbf{b}_{i}\,,\,\widetilde{\mathbf{b}}_{j}
ight
angle =\delta_{ij}.$$

The *biorthogonality* of the columns of **B** and the rows of \mathbf{B}^{-1} follows immediately from the definition of matrix inverse.

Example

Recall that any $N \times N$ matrix, **P**, with N distinct *eigenvalues*, λ_i , can be factored into a product of three matrices:

$$\mathbf{P} = \mathbf{X} \mathbf{\Lambda} \mathbf{Y}^{\mathrm{T}}$$

where the columns of

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \mid \mathbf{x}_2 \mid \dots \mid \mathbf{x}_M \end{bmatrix}$$

are *right eigenvectors* satisfying $\lambda_i \mathbf{x}_i = \mathbf{P} \mathbf{x}_i$ and the rows of

$$\mathbf{Y}^{\mathrm{T}} = \begin{bmatrix} \mathbf{y}_{1}^{\mathrm{T}} \\ \mathbf{y}_{2}^{\mathrm{T}} \\ \vdots \\ \mathbf{y}_{M}^{\mathrm{T}} \end{bmatrix}$$

are *left eigenvectors* satisfying $\lambda_i \mathbf{y}_i^{\mathrm{T}} = \mathbf{y}_i^{\mathrm{T}} \mathbf{P}$ and Λ is a diagonal matrix of eigenvalues where $\Lambda_{ii} = \lambda_i$.

Example (contd.)

Because \mathbf{X} and \mathbf{Y}^{T} are inverses:

$$\langle \mathbf{x}_i, \mathbf{y}_j \rangle = \delta_{ij}.$$

Consequently, the right and left eigenvectors form primal basis X and dual basis \mathcal{Y} . We take inner products with the left eigenvectors \mathcal{Y} to find the representation in the basis of right eigenvectors X and *vice versa*.

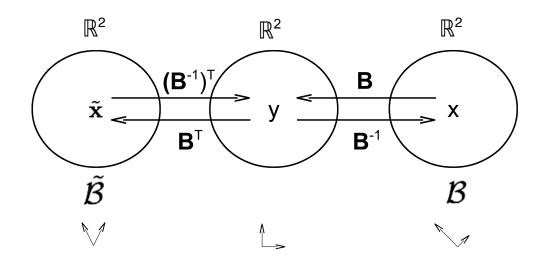


Figure 4: Primal \mathcal{B} (right) and dual $\tilde{\mathcal{B}}$ (left) bases and standard basis (center). The vectors which comprise $\tilde{\mathcal{B}}$ are the transposes of the rows of \mathbf{B}^{-1} .

Frame Synthesis Matrix

Let \mathcal{F} consist of the *N* frame vectors, $\mathbf{f}_1 \dots \mathbf{f}_N \in \mathbb{R}^M$, where $N \ge M$. Let $\{\mathbf{y}\}_{\mathcal{F}} \in \mathbb{R}^N$ be a representation of $\mathbf{y} \in \mathbb{R}^M$ in \mathcal{F} . It follows that

$$\mathbf{y} = \mathbf{F}\{\mathbf{y}\}_{\mathcal{F}}$$

where the synthesis matrix, **F**, is the $M \times N$ matrix,

$$\mathbf{F} = \left[\mathbf{f}_1 \mid \mathbf{f}_2 \mid \ldots \mid \mathbf{f}_N \right].$$

Frame Analysis Matrix

We might guess that

$$\{\mathbf{y}\}_{\mathcal{F}} = \mathbf{F}^{-1}\mathbf{y}$$

where \mathbf{F}^{-1} is $N \times M$ and $\mathbf{F}\mathbf{F}^{-1} = \mathbf{I}$. Unfortunately, because \mathbf{F} is not square, there is no unique inverse. However, \mathbf{F} has an infinite number of *right-inverses*. Each of the $\{\mathbf{y}\}_{\mathcal{F}}$ produced when \mathbf{y} is multiplied by a distinct right-inverse is a distinct representation of the vector \mathbf{y} in the frame, \mathcal{F} .

Pseudoinverse

The *pseudoinverse* of **F** is

$$\mathbf{F}^{+} = \mathbf{F}^{T} (\mathbf{F}\mathbf{F}^{T})^{-1}$$
.
 \mathbf{F}^{+} is a right inverse of **F** because

$$\mathbf{F}\mathbf{F}^{+} = \mathbf{F}\mathbf{F}^{\mathrm{T}}(\mathbf{F}\mathbf{F}^{\mathrm{T}})^{-1} = \mathbf{I}.$$

The $N \times M$ matrix, \mathbf{F}^+ , is as an *analysis matrix* because it transforms a representation $\mathbf{y} \in \mathbb{R}^M$, in the standard basis, into a representation $\{\mathbf{y}\}_{\mathcal{F}} \in \mathbb{R}^N$, in the frame, \mathcal{F} :

$$\{\mathbf{y}\}_{\mathcal{F}} = \mathbf{F}^+ \mathbf{y}.$$

Dual Frame and Its Synthesis Matrix

If \mathcal{F} consists of the *N* frame vectors, $\mathbf{f}_1 \dots \mathbf{f}_N \in \mathbb{R}^M$, with analysis matrix \mathbf{F}^+ , then there exists a *dual frame*, $\widetilde{\mathcal{F}}$, consisting of the *N* frame vectors, $\mathbf{f}_1 \dots \mathbf{f}_N \in \mathbb{R}^M$:

$$\left(\mathbf{F}^{+}\right)^{\mathrm{T}} = \left[\widetilde{\mathbf{f}}_{1} \mid \widetilde{\mathbf{f}}_{2} \mid \ldots \mid \widetilde{\mathbf{f}}_{N} \right].$$

Let $\{\mathbf{y}\}_{\widetilde{\mathcal{F}}} \in \mathbb{R}^N$ be a representation of $\mathbf{y} \in \mathbb{R}^M$ in $\widetilde{\mathcal{F}}$. It follows that

$$\mathbf{y} = \left(\mathbf{F}^{+}\right)^{\mathrm{T}} \{\mathbf{y}\}_{\widetilde{\mathcal{F}}}.$$

and $(\mathbf{F}^+)^{\mathrm{T}}$ is the synthesis matrix for the dual frame, $\widetilde{\mathcal{F}}$.

Dual Frame Analysis Matrix

Because $\mathbf{F}\mathbf{F}^+ = \mathbf{I}$, it follows that \mathbf{F}^T is a right inverse of $(\mathbf{F}^+)^T$:

$$(\mathbf{F}^+)^{\mathrm{T}} \mathbf{F}^{\mathrm{T}} = \mathbf{I}.$$

Consequently, \mathbf{F}^{T} is an *analysis matrix* for the dual frame, $\widetilde{\mathcal{F}}$:

$$\{\mathbf{y}\}_{\widetilde{\mathcal{F}}} = \mathbf{F}^{\mathrm{T}}\mathbf{y}.$$

Span of Dual Frame

The *N* vectors $\widetilde{\mathcal{F}}$ form a frame for \mathbb{R}^M iff for every $\mathbf{y} \in \mathbb{R}^M$ of finite non-zero length there is a finite non-zero length representation of \mathbf{y} in $\widetilde{\mathcal{F}}$:

 $A||\mathbf{y}||^2 \le ||\{\mathbf{y}\}_{\widetilde{\mathcal{F}}}||^2 \le B||\mathbf{y}||^2$ where $0 < A \le B < \infty$.

Span of Primal Frame

Because the spans of the primal (\mathcal{F}) and dual $(\widetilde{\mathcal{F}})$ frames are the same, and because

$$\{\mathbf{y}\}_{\widetilde{\mathcal{F}}} = \mathbf{F}^{\mathrm{T}}\mathbf{y}$$

 \mathcal{F} is a frame iff for all $\mathbf{y} \in \mathbb{R}^M$ there exist *A* and *B* where $0 < A \leq B < \infty$ and where

$$A||\mathbf{y}||^2 \le ||\mathbf{F}^{\mathrm{T}}\mathbf{y}||^2 \le B||\mathbf{y}||^2.$$

A and B are called the *frame bounds*. This is significant because this is a necessary and sufficient condition for a set of vectors (the columns of \mathbf{F}) to form a frame.

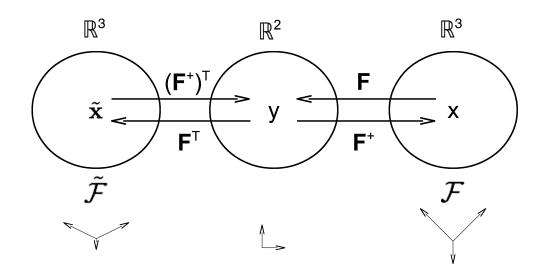


Figure 5: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) frames and standard basis (center). The vectors which comprise $\tilde{\mathcal{F}}$ are the transposes of the rows of \mathbf{F}^+ .

Example

What is the representation of $\mathbf{y} = \begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathrm{T}}$ in the frame formed by the vectors $\mathbf{f}_1 = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}^{\mathrm{T}}$, $\mathbf{f}_2 = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix}^{\mathrm{T}}$ and $\mathbf{f}_3 = \begin{bmatrix} 0 & -1 \end{bmatrix}^{\mathrm{T}}$?

$$\mathbf{F} = \begin{bmatrix} 0.70711 & -0.70711 & 0 \\ 0.70711 & 0.70711 & -1 \end{bmatrix}$$
$$\mathbf{F}^{+} = \begin{bmatrix} 0.70711 & 0.35355 \\ -0.70711 & 0.35355 \\ 0 & -0.5 \end{bmatrix}$$
$$\mathbf{F}^{+}\mathbf{y} = \begin{bmatrix} 1.06066 \\ -0.35355 \\ -0.5 \end{bmatrix}$$

Tight-Frames

If A = B then

$$||\mathbf{F}^{\mathrm{T}}\mathbf{y}||^{2} = A||\mathbf{y}||^{2}$$

and \mathcal{F} is said to be a *tight-frame*. When \mathcal{F} is a tight-frame,

$$\mathbf{F}^+ = \frac{1}{A} \mathbf{F}^{\mathrm{T}}.$$

If $||\mathbf{f}_i|| = 1$ for all frame vectors, \mathbf{f}_i , then *A* equals the *overcompleteness* of the representation. When A = B = 1, then \mathcal{F} is an *orthonormal basis* and $\mathcal{F} = \widetilde{\mathcal{F}}$.

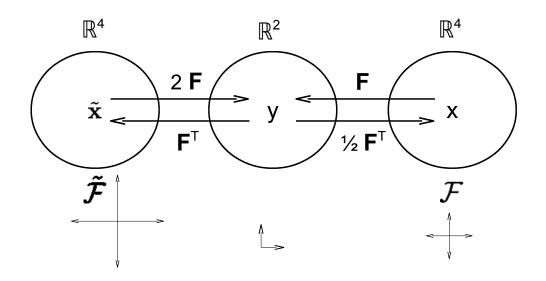


Figure 6: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) tight-frames with overcompleteness two and standard basis (center).

Example

What is the representation of $\mathbf{y} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ in the frame formed by the vectors $\mathbf{f}_1 =$ $\begin{bmatrix} 0 & 1 \end{bmatrix}^{\mathrm{T}}, \mathbf{f}_2 = \begin{bmatrix} 1 & 0 \end{bmatrix}^{\mathrm{T}}, \mathbf{f}_3 = \begin{bmatrix} 0 & -1 \end{bmatrix}^{\mathrm{T}}$ and $\mathbf{f}_4 = \begin{bmatrix} -1 & 0 \end{bmatrix}^{\mathrm{T}}$? $\mathbf{F} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$ $\mathbf{F}^{+} = \frac{1}{2}\mathbf{F}^{\mathrm{T}} = \begin{vmatrix} 0 & 0.5 \\ 0.5 & 0 \\ 0 & -0.5 \\ 0.5 & 0 \end{vmatrix}$ $\frac{1}{2}\mathbf{F}^{\mathrm{T}}\mathbf{y} = \begin{vmatrix} 0.5 \\ 0.5 \\ -0.5 \\ 0.5 \end{vmatrix}$

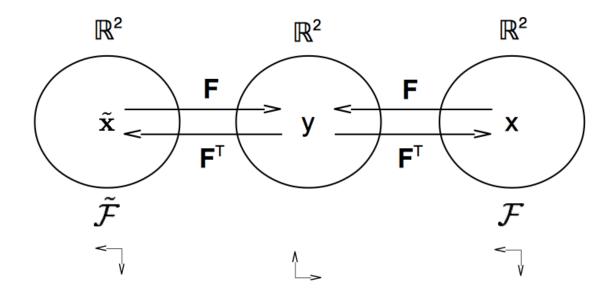


Figure 7: Primal \mathcal{F} (right) and dual $\tilde{\mathcal{F}}$ (left) tight-frames with overcompleteness one (orthonormal bases) and standard basis (center).

Summary of Notation

- $\mathbf{y} \in \mathbb{R}^M$ a vector.
- $\{\mathbf{y}\}_{\mathcal{F}} \in \mathbb{R}^N$ a representation of \mathbf{y} in primal frame \mathcal{F} .
- $\mathbf{f}_1 \dots \mathbf{f}_N \in \mathbb{R}^M$ where $N \ge M$ frame vectors for primal frame \mathcal{F} .
- $\mathbf{F} = \begin{bmatrix} \mathbf{f}_1 & | \mathbf{f}_2 & | \dots & | \mathbf{f}_N \end{bmatrix}$ synthesis matrix for primal frame \mathcal{F} .
- $\mathbf{F}: \mathbb{R}^N \to \mathbb{R}^M$.
- $\mathbf{F}^+ = \mathbf{F}^T (\mathbf{F}^T \mathbf{F})^{-1}$ analysis matrix for primal frame \mathcal{F} .
- $\mathbf{F}^+ : \mathbb{R}^M \to \mathbb{R}^N$.
- 0 < A ≤ B < ∞ bounds for primal frame *F*.

Summary of Notation (contd.)

- $\{\mathbf{y}\}_{\widetilde{\mathcal{F}}} \in \mathbb{R}^M$ a representation of \mathbf{y} in dual frame $\widetilde{\mathcal{F}}$.
- $\widetilde{\mathbf{f}}_1 \dots \widetilde{\mathbf{f}}_N \in \mathbb{R}^M$ frame vectors for dual frame $\widetilde{\mathcal{F}}$.
- $(\mathbf{F}^+)^{\mathrm{T}} = \left[\widetilde{\mathbf{f}}_1 \mid \widetilde{\mathbf{f}}_2 \mid \dots \mid \widetilde{\mathbf{f}}_N \right] \text{synthesis matrix for dual frame } \widetilde{\mathcal{F}}.$
- $(\mathbf{F}^+)^{\mathrm{T}} : \mathbb{R}^N \to \mathbb{R}^M.$
- \mathbf{F}^{T} analysis matrix for dual frame $\widetilde{\mathcal{F}}$.
- $\mathbf{F}^{\mathrm{T}}: \mathbb{R}^{M} \to \mathbb{R}^{N}.$
- $0 < \frac{1}{B} \leq \frac{1}{A} < \infty$ bounds for dual frame $\widetilde{\mathcal{F}}$.