
Functions of Random Variables

Let’s consider a continuous r.v., Y , which
is a differentiable, increasing function
of a second continuous r.v., X :

Y = g(X).

Because g is differentiable and increas-
ing, g′ and g−1 are guaranteed to exist.
Because g maps all x≤ s≤ x+∆x to
y≤ t ≤ y+∆y:∫ x+∆x

x
fX(s)ds =

∫ y+∆y

y
fY(t)dt.

It follows that for small ∆x:

fY(y)∆y≈ fX(x)∆x.
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Dividing by ∆y, we get an approximate
expression for fY in terms of fX :

fY(y)≈ fX(x)
∆x
∆y

.



Functions of Random Variables (contd.)

This is exact in the limit ∆x→ 0:

fY(y) = lim
∆x→0

fX(x)
∆x
∆y

= lim
∆x→0

fX(x)
1

∆y/∆x

= lim
∆x→0

fX(x)
∆y/∆x

.

From calculus we know that:

lim
∆x→0

∆y
∆x

= lim
∆x→0

g(x+∆x)−g(x)
∆x

= g′(x).

Consequently

fY(y) =
fX(x)
g′(x)

.



Functions of Random Variables (contd.)

Substituting g−1(y) for x:

fY(y) =
fX(g−1(y))
g′(g−1(y))

yields an expression for fY in terms of
g′, g−1, and fX .



Linear Example

Consider a continuous r.v., Y , which is
a linear function of a continuous r.v., X .
Specifically, Y = aX +b. It follows that

g(x) = ax+b
g′(x) = a

g−1(y) = (y−b)/a.

Substituting the above into

fY(y) =
fX(g−1(y))
g′(g−1(y))

yields

fY(y) =
1
a

fX

(
y−b

a

)
.



Linear Example (contd.)

Let fX(x) = 1√
2π

e−(x−µ)2/2, then

fY(y) =
1

a
√

2π
e−
(

y−b
a −µ

)2
/2
.



Linear Example (contd.)

Unfortunately, there is a problem. When
a =−1, the function g is not increasing
(it is decreasing). Consequently,

− fY(y)∆y≈ fX(x)∆x.

It follows that for decreasing functions,

fY(y) =
fX(g−1(y))
−g′(g−1(y))

.

However, we can derive a function which
is correct in both cases by replacing g′(.)
with |g′(.)| in the expression relating fY(.)
and fX(.):

fY(y) =
fX(g−1(y))
|g′(g−1(y))|

.



Quadratic Example

Consider a continuous r.v., Y , which is
a quadratic function of a continuous r.v.,
X . Specifically, Y = X2. It follows that

g(x) = x2

g′(x) = 2x
g−1(y) =

√
y.

Substituting the above into

fY(y) =
fX(g−1(y))
|g′(g−1(y))|

yields

fY(y) =
fX(
√

y)
|2√y|

.



Quadratic Example (contd.)

Let fX(x) = 1√
2π

e−x2/2, then

fY(y) =
1√
2π

e−y/2

|2√y|
.

Unfortunately, there is a problem:∫
∞

0
fY(y)dy=

∫
∞

0

1√
2π

e−y/2

|2√y|
dy=

1
2
6= 1.

Can anyone see the mistake?



Quadratic Example (contd.)

The mistake is that two different values
of Y satisfy Y = X2:

g−1(y) =±√y.

We decided to use the positive square
root arbitrarily and ignored the nega-
tive square root. Hence the factor of
two error. In general, if a function does
not have a unique inverse, we must sum
over all possible inverse values:

fY(y) =
n

∑
i=1

fX(g−1
i (y))

|g′(g−1
i (y))|

.



Quadratic Example (contd.)

Let g−1
1 (y) =

√
y and g−1

2 (y) = −√y,
then

fY(y) =
fX(g−1

1 (y))
|g′(g−1

1 (y))|
+

fX(g−1
2 (y))

|g′(g−1
2 (y))|

=
1√
2π

e−y/2

√
y
.

This is an example of the χ2 distribu-
tion.



Kinetic Energy

Recall from physics, that the kinetic en-
ergy, K, of a moving body is given by

K =
1
2

mV 2

where m is mass and V is velocity. Let
V be a normally distributed random vari-
able with mean, µ, and variance, σ2:

fV(v) =
1

σ
√

2π
e−(v−µ)2/2σ2

.

We would like to compute fK(k), the
p.d.f for the continuous random vari-
able, K.



Kinetic Energy (contd.)

We start by computing, g′, g−1
1 , and g−1

2 :

g(v) =
1
2

mv2

g′(v) = mv
g−1

1 (k) =
√

2k/m
g−1

2 (k) = −
√

2k/m.

Substituting fV(v) and the above into

fK(k) =
fV(g−1

1 (k))
|g′(g−1

1 (k))|
+

fV(g−1
2 (k))

|g′(g−1
2 (k))|

yields

fK(k) =
e−
(√

2k/m−µ
)2

/2σ2
+ e−

(
−
√

2k/m−µ
)2

/2σ2

σ
√

2π m
√

2k/m

=
e−
(√

2k/m−µ
)2

/2σ2
+ e−

(√
2k/m+µ

)2
/2σ2

2σ
√

π k m
.


