Functions of Random Variables

Let's consider a continuous r.v., Y, which is a differentiable, increasing function of a second continuous r.v., X :

$$
Y=g(X)
$$

Because g is differentiable and increasing, g^{\prime} and g^{-1} are guaranteed to exist. Because g maps all $x \leq s \leq x+\Delta x$ to $y \leq t \leq y+\Delta y$:

$$
\int_{x}^{x+\Delta x} f_{X}(s) d s=\int_{y}^{y+\Delta y} f_{Y}(t) d t
$$

It follows that for small Δx :

$$
f_{Y}(y) \Delta y \approx f_{X}(x) \Delta x
$$

Dividing by Δy, we get an approximate expression for f_{Y} in terms of f_{X} :

$$
f_{Y}(y) \approx f_{X}(x) \frac{\Delta x}{\Delta y}
$$

Functions of Random Variables (contd.)
This is exact in the limit $\Delta x \rightarrow 0$:

$$
\begin{aligned}
f_{Y}(y) & =\lim _{\Delta x \rightarrow 0} f_{X}(x) \frac{\Delta x}{\Delta y} \\
& =\lim _{\Delta x \rightarrow 0} f_{X}(x) \frac{1}{\Delta y / \Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{f_{X}(x)}{\Delta y / \Delta x}
\end{aligned}
$$

From calculus we know that:
$\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{g(x+\Delta x)-g(x)}{\Delta x}=g^{\prime}(x)$.
Consequently

$$
f_{Y}(y)=\frac{f_{X}(x)}{g^{\prime}(x)}
$$

Functions of Random Variables (contd.)

Substituting $g^{-1}(y)$ for x :

$$
f_{Y}(y)=\frac{f_{X}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)}
$$

yields an expression for f_{Y} in terms of g^{\prime}, g^{-1}, and f_{X}.

Linear Example

Consider a continuous r.v., Y, which is a linear function of a continuous r.v., X. Specifically, $Y=a X+b$. It follows that

$$
\begin{aligned}
g(x) & =a x+b \\
g^{\prime}(x) & =a \\
g^{-1}(y) & =(y-b) / a .
\end{aligned}
$$

Substituting the above into

$$
f_{Y}(y)=\frac{f_{X}\left(g^{-1}(y)\right)}{g^{\prime}\left(g^{-1}(y)\right)}
$$

yields

$$
f_{Y}(y)=\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) .
$$

Linear Example (contd.)

$$
\text { Let } \begin{aligned}
f_{X}(x) & =\frac{1}{\sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2} \text {, then } \\
\qquad f_{Y}(y) & =\frac{1}{a \sqrt{2 \pi}} e^{-\left(\frac{y-b}{a}-\mu\right)^{2} / 2} .
\end{aligned}
$$

Linear Example (contd.)

Unfortunately, there is a problem. When $a=-1$, the function g is not increasing (it is decreasing). Consequently,

$$
-f_{Y}(y) \Delta y \approx f_{X}(x) \Delta x
$$

It follows that for decreasing functions,

$$
f_{Y}(y)=\frac{f_{X}\left(g^{-1}(y)\right)}{-g^{\prime}\left(g^{-1}(y)\right)}
$$

However, we can derive a function which is correct in both cases by replacing $g^{\prime}($. with $\left|g^{\prime}().\right|$ in the expression relating $f_{Y}($. and $f_{X}($.$) :$

$$
f_{Y}(y)=\frac{f_{X}\left(g^{-1}(y)\right)}{\left|g^{\prime}\left(g^{-1}(y)\right)\right|}
$$

Quadratic Example

Consider a continuous r.v., Y, which is a quadratic function of a continuous r.v., X. Specifically, $Y=X^{2}$. It follows that

$$
\begin{aligned}
g(x) & =x^{2} \\
g^{\prime}(x) & =2 x \\
g^{-1}(y) & =\sqrt{y}
\end{aligned}
$$

Substituting the above into

$$
f_{Y}(y)=\frac{f_{X}\left(g^{-1}(y)\right)}{\left|g^{\prime}\left(g^{-1}(y)\right)\right|}
$$

yields

$$
f_{Y}(y)=\frac{f_{X}(\sqrt{y})}{|2 \sqrt{y}|} .
$$

Quadratic Example (contd.)

Let $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$, then

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} \frac{e^{-y / 2}}{|2 \sqrt{y}|}
$$

Unfortunately, there is a problem:
$\int_{0}^{\infty} f_{Y}(y) d y=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} \frac{e^{-y / 2}}{|2 \sqrt{y}|} d y=\frac{1}{2} \neq 1$.
Can anyone see the mistake?

Quadratic Example (contd.)

The mistake is that two different values of Y satisfy $Y=X^{2}$:

$$
g^{-1}(y)= \pm \sqrt{y} .
$$

We decided to use the positive square root arbitrarily and ignored the negative square root. Hence the factor of two error. In general, if a function does not have a unique inverse, we must sum over all possible inverse values:

$$
f_{Y}(y)=\sum_{i=1}^{n} \frac{f_{X}\left(g_{i}^{-1}(y)\right)}{\left|g^{\prime}\left(g_{i}^{-1}(y)\right)\right|}
$$

Quadratic Example (contd.)

Let $g_{1}^{-1}(y)=\sqrt{y}$ and $g_{2}^{-1}(y)=-\sqrt{y}$, then

$$
\begin{aligned}
f_{Y}(y) & =\frac{f_{X}\left(g_{1}^{-1}(y)\right)}{\left|g^{\prime}\left(g_{1}^{-1}(y)\right)\right|}+\frac{f_{X}\left(g_{2}^{-1}(y)\right)}{\left|g^{\prime}\left(g_{2}^{-1}(y)\right)\right|} \\
& =\frac{1}{\sqrt{2 \pi}} \frac{e^{-y / 2}}{\sqrt{y}}
\end{aligned}
$$

This is an example of the χ^{2} distribution.
$\underline{\text { Kinetic Energy }}$
Recall from physics, that the kinetic energy, K, of a moving body is given by

$$
K=\frac{1}{2} m V^{2}
$$

where m is mass and V is velocity. Let V be a normally distributed random variable with mean, μ, and variance, σ^{2} :

$$
f_{V}(v)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(v-\mu)^{2} / 2 \sigma^{2}}
$$

We would like to compute $f_{K}(k)$, the p.d.f for the continuous random variable, K.

Kinetic Energy (contd.)
We start by computing, g^{\prime}, g_{1}^{-1}, and g_{2}^{-1} :

$$
\begin{aligned}
g(v) & =\frac{1}{2} m v^{2} \\
g^{\prime}(v) & =m v \\
g_{1}^{-1}(k) & =\sqrt{2 k / m} \\
g_{2}^{-1}(k) & =-\sqrt{2 k / m}
\end{aligned}
$$

Substituting $f_{V}(v)$ and the above into

$$
f_{K}(k)=\frac{f_{V}\left(g_{1}^{-1}(k)\right)}{\left|g^{\prime}\left(g_{1}^{-1}(k)\right)\right|}+\frac{f_{V}\left(g_{2}^{-1}(k)\right)}{\left|g^{\prime}\left(g_{2}^{-1}(k)\right)\right|}
$$

yields

$$
\begin{aligned}
f_{K}(k) & =\frac{e^{-(\sqrt{2 k / m}-\mu)^{2} / 2 \sigma^{2}}+e^{-(-\sqrt{2 k / m}-\mu)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi} m \sqrt{2 k / m}} \\
& =\frac{e^{-(\sqrt{2 k / m}-\mu)^{2} / 2 \sigma^{2}}+e^{-(\sqrt{2 k / m}+\mu)^{2} / 2 \sigma^{2}}}{2 \sigma \sqrt{\pi k m}}
\end{aligned}
$$

