CS 530: Geometric and Probabilistic Methods in Computer Science Homework 4 (Fall '06)

- 1. Characterize the following as linear, or non-linear, and as even, odd, or neither, and prove your characterization.
 - (a) f(x) = -x
 - (b) f(x) = 7x + 1
 - (c) $f(x) = x^2 x$
 - (d) $f(x) = e^{-x^2}$
 - (e) $f(x) = \cos x$.
- 2. Write a function in MATLAB which, given an $N \times 1$ vector, \mathbf{x} , will return an $N \times N$ circulant matrix:

$$\mathbf{A} = \left[\begin{array}{c|c} \mathbf{S}^0 \mathbf{x} & \mathbf{S}^1 \mathbf{x} & \cdots & \mathbf{S}^{N-1} \mathbf{x} \end{array} \right]$$

where $S_{ij}^n = \delta(i - j - n \mod N)$ and δ is the Kronecker delta function.

- 3. Using MATLAB compute the following:
 - (a) A 4 × 4 circulant matrix **A**, where the first column of **A** is $\mathbf{x} = \begin{bmatrix} -1 & 2 & -3 & 4 \end{bmatrix}^{\mathrm{T}}$.
 - (b) W, the matrix of right eigenvectors of A, and Λ , the diagonal matrix of eigenvalues.
 - (c) \mathbf{W}^{-1} and $(\mathbf{W}^*)^{\mathbf{T}}$.
 - (d) **Ay** where $\mathbf{y} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^{\mathrm{T}}$.
 - (e) $\mathbf{W}\Lambda(\mathbf{W}^*)^T\mathbf{y}$ where $\mathbf{y} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T$.
 - (f) A 100×100 circulant matrix **B** where the first column of **B** is $\mathbf{x} = \begin{bmatrix} -1 & 2 & -3 & \cdots & 100 \end{bmatrix}^T$. There is no need to print it out.
 - (g) Let λ be the eigenvalue of \mathbf{B} with twelfth smallest magnitude. Plot the left and right eigenvectors of \mathbf{B} with eigenvalue equal to λ . Note: The eigenvectors are complex. The real and imaginary parts should be plotted as functions of time.

- 4. Prove that $sin(x) = \frac{e^{jx} e^{-jx}}{2j}$.
- 5. The impulse response function of a linear shift-invariant system is:

$$h(t) = \frac{\sin(\pi t)}{\pi t}$$

and its input is:

$$x(t) = \cos(4\pi t) + \cos(\pi t/2).$$

What is its output?

6. The impulse response function of a linear shift-invariant system is:

$$h(t) = e^{-\frac{\pi t^2}{2}}$$

and its input is:

$$x(t) = e^{j2\pi s_0 t}.$$

What is its output?

- 7. The sine Gabor function is the product of a sine and a Gaussian, $f(t) = e^{-\pi t^2} \sin(2\pi s_0 t)$. Give an expression for F(s), the Fourier transform of f(t).
- 8. Prove that the sum of two independent Gaussian random variables with zero mean and variances σ_1^2 and σ_2^2 is a Gaussian random variable with zero mean and variance $\sigma_1^2 + \sigma_2^2$.
- 9. The function, f(t), is defined as:

$$f(t) = \begin{cases} 1 & \text{if } |at - b| \le \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$$

Give an expression for F(s), the Fourier transform of f(t).

10. The transfer function of a linear shift invariant system is H(s) = 1/s. The impulse response function, h(t), is $\mathcal{F}^{-1}\{H(s)\}$. Give an expression for g(t) where:

$$g(t) = \int_{-\infty}^{\infty} e^{j2\pi s_0 \tau} h(t - \tau) d\tau.$$

11. Compute the Fourier transform of $f(t) = -2\pi t \ e^{-\pi t^2} \cos(2\pi s_0 t)$. Hint: What is $\frac{d\left(e^{-\pi t^2}\right)}{dt}$?

- 12. Prove the following statement: If $\mathcal{F}\{f\}(s) = F(s)$ then $\mathcal{F}\{F\}(s) = f(-s)$. Hint: If $\mathcal{F}\{f\}(s) = F(s)$ then $\mathcal{F}^{-1}\{F\}(t) = f(t)$.
- 13. Prove that $\mathcal{F}^{-1}\{\mathcal{F}\{f\}\}=f$
- 14. Write a MATLAB function which takes an integer argument, *N*, and computes the truncated Fourier series:

$$f_N(t) = \pi + \sum_{\substack{\omega = -N \ \omega \neq 0}}^{N} \frac{j}{\omega} e^{j\omega t}$$

Plot the real and imaginary parts of $f_N(t)$ for N=1,3,6,12,24 and 48. Plot the functions on the interval, $-4\pi \le t \le 4\pi$.