Hartley's Information Measure

- Messages are strings of characters from a fixed alphabet.
- The amount of information contained in a message should be a function of the total number of possible messages.
- If you have an alphabet with s symbols, then there are s^ℓ messages of length, ℓ.
- The amount of information contained in two messages should be the sum of the information contained in the individual messages.

• The amount of information in ℓ messages of length one should equal the amount of information in one message of length ℓ .

It is clear that the only function which satisfies these requirements is the log function:

$$\ell \log(s) = \log(s^\ell).$$

If the base of the logarithm is two, then the unit of information is the *bit*.

Shannon's Information Measure

Let *X* be a discrete r.v. with *n* outcomes, $\{x_1, ..., x_n\}$. The probability that the outcome will be x_i is $p_X(x_i)$. The *information* contained in a message about the outcome of *X* is:

 $-\log p_X(x_i).$

The *avg. information* or *entropy* of a message about the outcome of *X* is:

$$H_X = -\sum_{i=1}^n p_X(x_i) \log p_X(x_i).$$

Example

Let *X* be a discrete r.v. with two outcomes, $\{x_1, x_2\}$. The probability that the outcome will be x_1 is θ and the probability that the outcome will be x_2 is $1 - \theta$. The avg. information contained in a message about the outcome of *X* is:

$$H_X = -\theta \log(\theta) - (1 - \theta) \log(1 - \theta).$$

We observe that the avg. information is maximized when $\theta = 1 - \theta = \frac{1}{2}$, in which case $H_X = 1$ bit.

Joint Information

Let *X* be a discrete r.v. with outcomes, $\{x_1, ..., x_n\}$ and let *Y* be a discrete r.v. with outcomes, $\{y_1, ..., y_m\}$. The probability that the outcome of *X* is x_i and the outcome of *Y* is y_j is $p_{XY}(x_i, y_j)$. The amount of information contained in a message about the outcome of *X* and *Y* is:

 $-\log p_{XY}(x_i, y_j).$

The avg. information or entropy of a message about the outcome of *X* and *Y* is:

$$H_{XY} = -\sum_{i=1}^{n} \sum_{j=1}^{m} p_{XY}(x_i, y_j) \log p_{XY}(x_i, y_j).$$

Figure 1: $H_X = -\theta \log(\theta) - (1 - \theta) \log(1 - \theta)$.

Properties of Shannon's Measure

- H_X is *continuous* in the $p_X(x_i)$.
- H_X is *symmetric*. That is, $H_X = H_Y$ when $p_Y(x_1) = p_X(x_2)$ and $p_Y(x_2) = p_X(x_1)$. More generally, H_X is invariant under permutation of the distribution function, p_X .
- H_X is *additive*. That is, when X and Y are independent r.v.'s, then $H_{XY} = H_X + H_Y$.
- H_X is maximum when all of the $p_X(x_i)$'s are equal.
- H_X is minimum when one of the $p_X(x_i)$'s equals one.

Additivity Example

Let *X* and *Y* be fair dice. The avg. amount of information contained in a message about the outcome of *X* and *Y* is:

$$H_{XY} = -\sum_{i=1}^{6} \sum_{j=1}^{6} \frac{1}{36} \log \frac{1}{36} \approx 5.16$$
 bits.

The avg. amount of information contained in a message about the outcome of *X* is:

$$H_X = -\sum_{i=1}^6 \frac{1}{6} \log \frac{1}{6} \approx 2.58$$
 bits.

Since $H_X = H_Y$, it follows that $H_X + H_Y \approx 5.16$ bits.

Symmetry Example

- Let X be a discrete r.v. with outcomes, $\{A, G, C, T\}$, which occur with probabilities, $\{\frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}\}$.
- Let Y be a discrete r.v. with outcomes, {♣, ♠, ◊, ♡}, which occur with probabilities, {¹/₄, ¹/₈, ¹/₂, ¹/₈}.
- The avg. amount of information contained in a message about the outcome of *X* is:

$$H_X = -\frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{2}\log\frac{1}{2}$$

= 1.75 bits

Symmetry Example (contd.)

• The avg. amount of information contained in a message about the outcome of *Y* is:

$$H_Y = -\frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{2}\log\frac{1}{2} - \frac{1}{8}\log\frac{1}{8} = 1.75 \text{ bits}$$

Theorem 1.1

Let *X* be a discrete r.v. with *n* outcomes, $\{x_1, ..., x_n\}$. The probability that the outcome will be x_i is $p_X(x_i)$. Then

- $H_X \leq \log n$ with $H_X = \log n$ if and only if for all *i* it is true that $p_X(x_i) = 1/n$.
- $H_X \ge 0$ with $H_X = 0$ if and only if there exists a *k* such that $p_X(x_k) = 1$.

Proof:

$$H_{X} - \log n = -\sum_{i=1}^{n} p_{X}(x_{i}) \log p_{X}(x_{i}) - \log n = -\sum_{i=1}^{n} p_{X}(x_{i}) \log p_{X}(x_{i}) - \sum_{i=1}^{n} p_{X}(x_{i}) \log n = -\sum_{i=1}^{n} p_{X}(x_{i}) (\log p_{X}(x_{i}) + \log n) = \sum_{i=1}^{n} p_{X}(x_{i}) \log \left(\frac{1}{np_{X}(x_{i})}\right).$$

From the inequality $\ln a \le a - 1$ and the fact that $\log a = \ln a / \ln 2$:

$$\ln a \leq (a-1)$$

$$\ln a / \ln 2 \leq (a-1) / \ln 2$$

$$\log a \leq (a-1) / \ln 2$$

$$\log a \leq (a-1) \ln e / \ln 2$$

$$\log a \leq (a-1) \log e$$

Figure 2: $\ln a \le a - 1$.

Using this result in the expression for $H_X - \log n$ yields:

$$H_X - \log n = \sum_{i=1}^n p_X(x_i) \log \left(\frac{1}{n p_X(x_i)}\right)$$

$$\leq \sum_{i=1}^n p_X(x_i) \left(\frac{1}{n p_X(x_i)} - 1\right) \log e$$

$$\leq \left(\sum_{i=1}^n \frac{1}{n} - \sum_{i=1}^n p_X(x_i)\right) \log e$$

$$\leq \left(n\frac{1}{n} - 1\right) \log e$$

$$\leq 0$$

This proves that $H_X \leq \log n$. To prove that $H_X \geq 0$, we observe that:

•
$$\forall i \ p_X(x_i) \geq 0$$

•
$$\forall i - \log p_X(x_i) \geq 0$$

It follows that:

$$-\sum_{i=1}^n p_X(x_i)\log p_X(x_i) \ge 0.$$

Maximum Entropy

Let *X* be a r.v. with outcomes, $\{x_1, ..., x_n\}$. These outcomes occur with probability, $p_X(x_i) = 1/n$ for all *i*. The avg. information contained in a message about the outcome of *X* is:

$$H_X = -\sum_{i=1}^n p_X(x_i) \log p_X(x_i)$$

= $-\sum_{i=1}^n \frac{1}{n} \log \frac{1}{n}$
= $-\left(\frac{1}{n} \log \frac{1}{n}\right) \sum_{i=1}^n 1$
= $-\left(\frac{1}{n} \log \frac{1}{n}\right) n = -\log \frac{1}{n}$
= $\log n$

Maximum Entropy Example

Let *X* be a discrete r.v. with outcomes, {A,G,C,T}. These outcomes occur with probabilities, $\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\}$. The avg. amount of information contained in a message about the outcome of *X* is:

$$H_X = -\frac{1}{4}\log\frac{1}{4} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{4}\log\frac{1}{4} - \frac{1}{4}\log\frac{1}{4}$$

= 2 bits

The genome of the bacterium, *E. coli*, is a DNA molecule consisting of 4×10^6 base pairs. The maximum amount of information stored in the *E. coli* genome is therefore 8×10^6 bits.

Minimum Entropy Example

Let *X* be a discrete r.v. with outcomes, {A,G,C,T}. These outcomes occur with probabilities, {0,1,0,0}. The avg. amount of information contained in a message about the outcome of *X* is:

$$H_X = -0\log 0 - 1\log 1 - 0\log 0 - 0\log 0$$

= 0 bits.