Hartley’s Information Measure

- Messages are strings of characters from a fixed alphabet.
- The amount of information contained in a message should be a function of the total number of possible messages.
- If you have an alphabet with \(s \) symbols, then there are \(s^\ell \) messages of length, \(\ell \).
- The amount of information contained in two messages should be the sum of the information contained in the individual messages.
Hartley’s Information Measure (contd.)

• The amount of information in ℓ messages of length one should equal the amount of information in one message of length ℓ.

It is clear that the only function which satisfies these requirements is the log function:

$$\ell \log(s) = \log(s^{\ell}).$$

If the base of the logarithm is two, then the unit of information is the *bit*.
Shannon’s Information Measure

Let X be a discrete r.v. with n outcomes, $\{x_1, ..., x_n\}$. The probability that the outcome will be x_i is $p_X(x_i)$. The information contained in a message about the outcome of X is:

$$- \log p_X(x_i).$$

The avg. information or entropy of a message about the outcome of X is:

$$H_X = - \sum_{i=1}^{n} p_X(x_i) \log p_X(x_i).$$
Example

Let X be a discrete r.v. with two outcomes, $\{x_1, x_2\}$. The probability that the outcome will be x_1 is θ and the probability that the outcome will be x_2 is $1 - \theta$. The avg. information contained in a message about the outcome of X is:

$$H_X = -\theta \log(\theta) - (1 - \theta) \log(1 - \theta).$$

We observe that the avg. information is maximized when $\theta = 1 - \theta = \frac{1}{2}$, in which case $H_X = 1$ bit.
Joint Information

Let X be a discrete r.v. with outcomes, $\{x_1, \ldots, x_n\}$ and let Y be a discrete r.v. with outcomes, $\{y_1, \ldots, y_m\}$. The probability that the outcome of X is x_i and the outcome of Y is y_j is $p_{XY}(x_i, y_j)$. The amount of information contained in a message about the outcome of X and Y is:

$$- \log p_{XY}(x_i, y_j).$$

The avg. information or entropy of a message about the outcome of X and Y is:

$$H_{XY} = - \sum_{i=1}^{n} \sum_{j=1}^{m} p_{XY}(x_i, y_j) \log p_{XY}(x_i, y_j).$$
Figure 1: $H_X = -\theta \log(\theta) - (1 - \theta) \log(1 - \theta)$.
Properties of Shannon’s Measure

• H_X is continuous in the $p_X(x_i)$.

• H_X is symmetric. That is, $H_X = H_Y$ when $p_Y(x_1) = p_X(x_2)$ and $p_Y(x_2) = p_X(x_1)$. More generally, H_X is invariant under permutation of the distribution function, p_X.

• H_X is additive. That is, when X and Y are independent r.v.’s, then $H_{XY} = H_X + H_Y$.

• H_X is maximum when all of the $p_X(x_i)$’s are equal.

• H_X is minimum when one of the $p_X(x_i)$’s equals one.
Additivity Example

Let X and Y be fair dice. The avg. amount of information contained in a message about the outcome of X and Y is:

$$H_{XY} = - \sum_{i=1}^{6} \sum_{j=1}^{6} \frac{1}{36} \log \frac{1}{36} \approx 5.16 \text{ bits.}$$

The avg. amount of information contained in a message about the outcome of X is:

$$H_{X} = - \sum_{i=1}^{6} \frac{1}{6} \log \frac{1}{6} \approx 2.58 \text{ bits.}$$

Since $H_{X} = H_{Y}$, it follows that $H_{X} + H_{Y} \approx 5.16 \text{ bits.}$
Symmetry Example

- Let X be a discrete r.v. with outcomes, \{A, G, C, T\}, which occur with probabilities, \{\frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{2}\}.

- Let Y be a discrete r.v. with outcomes, \{♣, ♠, ♦, ♥\}, which occur with probabilities, \{\frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \frac{1}{8}\}.

- The avg. amount of information contained in a message about the outcome of X is:

 \[
 H_X = -\frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{2}\log\frac{1}{2}
 = 1.75 \text{ bits}
 \]
Symmetry Example (contd.)

- The avg. amount of information contained in a message about the outcome of Y is:

$$H_Y = -\frac{1}{4}\log\frac{1}{4} - \frac{1}{8}\log\frac{1}{8} - \frac{1}{2}\log\frac{1}{2} - \frac{1}{8}\log\frac{1}{8}$$

$$= 1.75 \text{ bits}$$
Theorem 1.1

Let X be a discrete r.v. with n outcomes, $\{x_1, \ldots, x_n\}$. The probability that the outcome will be x_i is $p_X(x_i)$. Then

- $H_X \leq \log n$ with $H_X = \log n$ if and only if for all i it is true that $p_X(x_i) = 1/n$.

- $H_X \geq 0$ with $H_X = 0$ if and only if there exists a k such that $p_X(x_k) = 1$.
Theorem 1.1 (contd.)

Proof:

\[H_X - \log n = \]

\[= - \sum_{i=1}^{n} p_X(x_i) \log p_X(x_i) - \log n = \]

\[= - \sum_{i=1}^{n} p_X(x_i) \log p_X(x_i) - \sum_{i=1}^{n} p_X(x_i) \log n = \]

\[= - \sum_{i=1}^{n} p_X(x_i) (\log p_X(x_i) + \log n) = \]

\[= \sum_{i=1}^{n} p_X(x_i) \log \left(\frac{1}{np_X(x_i)} \right). \]
Theorem 1.1 (contd.)

From the inequality $\ln a \leq a - 1$ and the fact that $\log a = \ln a / \ln 2$:

\[
\begin{align*}
\ln a & \leq (a - 1) \\
\ln a / \ln 2 & \leq (a - 1) / \ln 2 \\
\log a & \leq (a - 1) / \ln 2 \\
\log a & \leq (a - 1) \ln e / \ln 2 \\
\log a & \leq (a - 1) \log e
\end{align*}
\]
Figure 2: $\ln a \leq a - 1$.

\[
\text{line 1} \\
\text{line 2}
\]
Theorem 1.1 (contd.)

Using this result in the expression for $H_X - \log n$ yields:

$$H_X - \log n = \sum_{i=1}^{n} p_X(x_i) \log \left(\frac{1}{np_X(x_i)} \right)$$

$$\leq \sum_{i=1}^{n} p_X(x_i) \left(\frac{1}{np_X(x_i)} - 1 \right) \log e$$

$$\leq \left(\sum_{i=1}^{n} \frac{1}{n} - \sum_{i=1}^{n} p_X(x_i) \right) \log e$$

$$\leq \left(\frac{1}{n} - 1 \right) \log e$$

$$\leq 0$$
Theorem 1.1 (contd.)

This proves that $H_X \leq \log n$. To prove that $H_X \geq 0$, we observe that:

• $\forall i \ p_X(x_i) \geq 0$
• $\forall i \ -\log p_X(x_i) \geq 0$

It follows that:

$$-\sum_{i=1}^{n} p_X(x_i) \log p_X(x_i) \geq 0.$$
Maximum Entropy

Let X be a r.v. with outcomes, $\{x_1, \ldots, x_n\}$. These outcomes occur with probability, $p_X(x_i) = 1/n$ for all i. The avg. information contained in a message about the outcome of X is:

$$H_X = - \sum_{i=1}^{n} p_X(x_i) \log p_X(x_i)$$

$$= - \sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}$$

$$= - \left(\frac{1}{n} \log \frac{1}{n} \right) \sum_{i=1}^{n} 1$$

$$= - \left(\frac{1}{n} \log \frac{1}{n} \right) n = - \log \frac{1}{n}$$

$$= \log n$$
Maximum Entropy Example

Let X be a discrete r.v. with outcomes, \{A, G, C, T\}. These outcomes occur with probabilities, $\{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\}$. The avg. amount of information contained in a message about the outcome of X is:

$$H_X = -\frac{1}{4} \log \frac{1}{4} - \frac{1}{4} \log \frac{1}{4} - \frac{1}{4} \log \frac{1}{4} - \frac{1}{4} \log \frac{1}{4}$$

$$= 2 \text{ bits}$$

The genome of the bacterium, *E. coli*, is a DNA molecule consisting of 4×10^6 base pairs. The maximum amount of information stored in the *E. coli* genome is therefore 8×10^6 bits.
Minimum Entropy Example

Let X be a discrete r.v. with outcomes, \{A, G, C, T\}. These outcomes occur with probabilities, \{0, 1, 0, 0\}. The avg. amount of information contained in a message about the outcome of X is:

$$H_x = -0 \log 0 - 1 \log 1 - 0 \log 0 - 0 \log 0$$
$$= 0 \text{ bits}.$$