Principal Component Analysis (PCA)

- Quadratic Forms
- Multivariate Gaussian Density
- Inner and Outer Products
- Covariance Matrix
- Isodensity Surfaces
- Principal Components Theorem
- Diagonalizing the Covariance Matrix
- KL Transform
- Reducing Dimensionality

Quadratic Forms

Let $f(\mathbf{x})=\mathbf{x}^{\mathrm{T}} \mathbf{A x}$ where $\mathbf{A}=\mathbf{A}^{\mathrm{T}}$. In two-dimensions, we have

$$
\mathbf{A}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \quad \text { and } \quad \mathbf{x}=\left[\begin{array}{ll}
x & y
\end{array}\right]^{\mathrm{T}}
$$

so that

$$
\mathbf{A} \mathbf{x}=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
b x+c y
\end{array}\right]
$$

and
$\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{l}a x+b y \\ b x+c y\end{array}\right]=a x^{2}+2 b x y+c y^{2}$.

Quadratic Forms (contd.)

When \mathbf{A} is positive definite, then

$$
f(\mathbf{x})=\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}
$$

is a paraboloid and the isovalue contours,

$$
\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}=D
$$

are ellipses. A matrix is positive definite iff all of its eigenvalues are positive.

Example

$$
\begin{gathered}
\text { If } \mathbf{A}=\left[\begin{array}{rr}
5 & -2 \\
-2 & 5
\end{array}\right] \text { then } \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \text { equals } \\
5 x^{2}-4 x y+5 y^{2}
\end{gathered}
$$

The eigenvalues of \mathbf{A} are 3 and 7 and the corresponding eigenvectors are $\mathbf{u}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ and
$\mathbf{v}=\left[\begin{array}{r}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$. Now, let $\mathbf{A}=\mathbf{U B U}^{\mathrm{T}}$, where \mathbf{U} equals

$$
\mathbf{U}=\left[\begin{array}{rr}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right],
$$

then $\mathbf{B}=\mathbf{U}^{\mathrm{T}} \mathbf{A} \mathbf{U}$, which is

$$
\mathbf{B}=\left[\begin{array}{ll}
3 & 0 \\
0 & 7
\end{array}\right]
$$

The corresponding quadratic form, $\mathbf{u}^{\mathrm{T}} \mathbf{B u}$, is

$$
3 u^{2}+7 v^{2}
$$

Figure 1: Left: The ellipse, $5 x^{2}-4 x y+5 y^{2}=D$. Right: The ellipse, $3 u^{2}+7 v^{2}=D$.

Multivariate Gaussian Density

The multivariate Gaussian density is defined as follows:

$$
G(\mathbf{x})=\frac{1}{(2 \pi)^{\frac{K}{2}}|\mathbf{C}|^{\frac{1}{2}}} e^{-\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}}
$$

where K is the number of dimensions and \mathbf{C} is the $K \times K$ covariance matrix. In the bivariate case, \mathbf{C} looks like this:

$$
\mathbf{C}=\left[\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y y}
\end{array}\right] .
$$

Note: If \mathbf{C} is symmetric and positive definite, then \mathbf{C}^{-1} is also symmetric and positive definite.

Inner and Outer Products

Let $\mathbf{x}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{\mathrm{T}}$. The inner product of \mathbf{x} with itself, or $\mathbf{x}^{\mathrm{T}} \mathbf{x}$ is a scalar:

$$
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=1 \cdot 1+2 \cdot 2+3 \cdot 3=14
$$

The outer product of \mathbf{x} with itself, or $\mathbf{x}{ }^{\mathrm{T}}$ is a matrix:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right] .
$$

Covariance Matrix

First we construct an $N \times K$ matrix, \mathbf{X}, where the n-th row is the n-th sample of a multivariate Gaussian r.v., $\mathbf{x}=\left[\begin{array}{ll}x & y\end{array}\right]^{\mathrm{T}}$. For example, when $K=2$:

$$
\mathbf{X}=\left[\begin{array}{cc}
x_{1} & y_{1} \\
x_{2} & y_{2} \\
\vdots & \vdots \\
x_{N} & y_{N}
\end{array}\right] .
$$

The sample mean of the N samples is

$$
\vec{\mu}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}
$$

We will assume that $\vec{\mu}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\mathrm{T}}$. If this is false, we can always make it true by subtracting μ from each of the samples prior to constructing \mathbf{X}.

Covariance Matrix (contd.)

We observe that

$$
\begin{aligned}
\mathbf{X}^{\mathrm{T}} \mathbf{X} & =\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}} \\
& =\left[\begin{array}{ll}
x_{1} x_{1} & x_{1} y_{1} \\
x_{1} y_{1} & y_{1} y_{1}
\end{array}\right]+\cdots+\left[\begin{array}{ll}
x_{N} x_{N} & x_{N} y_{N} \\
x_{N} y_{N} & y_{N} y_{N}
\end{array}\right] .
\end{aligned}
$$

The covariance matrix is the matrix of the expected values of the products of the x and y components of the samples:

$$
\mathbf{C}=\frac{1}{N} \mathbf{X}^{\mathrm{T}} \mathbf{X}=\left[\begin{array}{ll}
\langle x x\rangle & \langle x y\rangle \\
\langle x y\rangle & \langle y y\rangle
\end{array}\right]=\left[\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{x y} & \sigma_{y y}
\end{array}\right]
$$

where \langle.$\rangle denotes expected value.$

Isodensity Surfaces

The isodensity surfaces of the multivariate Gaussian are the locus of those points where $G(\mathbf{x})$ has constant density:

$$
G(\mathbf{x})=\frac{1}{(2 \pi)^{\frac{K}{2}}|\mathbf{C}|^{\frac{1}{2}}} e^{-\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}}=D
$$

which can be re-arranged to yield:

$$
\mathbf{x}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}=-2 \ln \left[(2 \pi)^{\frac{K}{2}}|\mathbf{C}|^{\frac{1}{2}} D\right]
$$

Since \mathbf{C}^{-1} is positive definite the isodensity surfaces are ellipsoids. The axes of these ellipsoids are mutually orthogonal and point in the same directions as the eigenvectors of \mathbf{C}. These eigenvectors are the principal components of the multivariate Gaussian density.

Principal Components Theorem

The principal components of a multivariate Gaussian density are given by the eigenvectors of its covariance matrix.

Proof (in two-dimensions): We observe that

$$
e^{-\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{C}^{-1} \mathbf{x}}
$$

is maximized (or minimized) when $\mathbf{x}^{\mathrm{T}} \mathbf{C x}$ is maximized (or minimized). We therefore wish to find the unit vectors \mathbf{x} which maximize (or minimize):

$$
\begin{aligned}
\mathbf{x}^{\mathrm{T}} \mathbf{C} \mathbf{x} & =\mathbf{x}^{\mathrm{T}} \mathbf{C}^{\frac{1}{2}} \mathbf{C}^{\frac{1}{2}} \mathbf{x} \\
& =\mathbf{x}^{\mathrm{T}}\left(\mathbf{C}^{\frac{1}{2}}\right)^{\mathrm{T}} \mathbf{C}^{\frac{1}{2}} \mathbf{x} \\
& =\left(\mathbf{C}^{\frac{1}{2}} \mathbf{x}\right)^{\mathrm{T}} \mathbf{C}^{\frac{1}{2}} \mathbf{x} \\
& =\left\|\mathbf{C}^{\frac{1}{2}} \mathbf{x}\right\|^{2}
\end{aligned}
$$

where \mathbf{C} is symmetric and positive definite.

Principal Components Theorem (contd.)

Let \mathbf{w}_{1} and \mathbf{w}_{2} be eigenvectors of \mathbf{C} with eigenvalues λ_{1} and λ_{2}. Note that \mathbf{w}_{1} and \mathbf{w}_{2} are also eigenvectors of $\mathbf{C}^{\frac{1}{2}}$ but its eigenvalues are $\sqrt{\lambda_{1}}$ and $\sqrt{\lambda_{2}}$. Now consider a unit vector, \mathbf{x}, in the plane. Let θ be the relative orientation between \mathbf{x} and \mathbf{w}_{1}. It follows that

$$
[\mathbf{x}]_{\mathcal{W}}=\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]
$$

is the representation of \mathbf{x} in the basis defined by \mathbf{w}_{1} and \mathbf{w}_{2}. Consequently,

$$
\begin{aligned}
\left\|\left[\mathbf{C}^{\frac{1}{2}} \mathbf{x}\right]_{\mathcal{W}}\right\|^{2} & =\left(\sqrt{\lambda_{1}}\right)^{2} \cos ^{2} \theta+\left(\sqrt{\lambda_{2}}\right)^{2} \sin ^{2} \theta \\
& =\lambda_{1} \cos ^{2} \theta+\lambda_{2} \sin ^{2} \theta
\end{aligned}
$$

Principal Components Theorem (contd.)

Calculus tells us that $\left\|\left[\mathbf{C}^{\frac{1}{2}} \mathbf{x}\right]_{\mathcal{W}}\right\|^{2}$ is maximized (or minimized) when

$$
\frac{d\left(\lambda_{1} \cos ^{2} \theta+\lambda_{2} \sin ^{2} \theta\right)}{d \theta}=0
$$

Evaluating the above derivative:
$2 \lambda_{1} \cos \theta \sin \theta-2 \lambda_{2} \sin \theta \cos \theta=2 \cos \theta \sin \theta\left(\lambda_{1}-\lambda_{2}\right)$.
It follows that $\left\|\left[\mathbf{C}^{\frac{1}{2}} \mathbf{x}\right]_{\mathcal{W}}\right\|^{2}$ is maximized (or minimized) when $\theta=0$ (or $\theta=\pi / 2$), i.e., when $\mathbf{x}=\mathbf{w}_{\mathbf{1}}\left(\right.$ or $\left.\mathbf{x}=\mathbf{w}_{\mathbf{2}}\right)$. Now, because \mathcal{W} is orthonormal

$$
\left\|\left[\mathbf{C}^{\frac{1}{2}} \mathbf{x}\right]_{\mathcal{W}}\right\|^{2}=\left\|\mathbf{C}^{\frac{1}{2}} \mathbf{x}\right\|^{2}
$$

and because

$$
\left\|\mathbf{C}^{\frac{1}{2}} \mathbf{x}\right\|^{2}=\mathbf{x}^{\mathrm{T}} \mathbf{C} \mathbf{x}
$$

we conclude that $\mathbf{x}^{\mathrm{T}} \mathbf{C x}$ is maximized (or minimized) when \mathbf{x} is an eigenvector of \mathbf{C}.

Diagonalizing the Covariance Matrix

Because the covariance matrix \mathbf{C} is symmetric and positive definite, it has K orthogonal eigenvectors:

$$
\lambda_{k} \mathbf{w}_{k}=\mathbf{C w}_{k}
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{K}$. It can therefore be diagonalized as follows:

$$
\mathbf{C}=\mathbf{W} \mathbf{D} \mathbf{W}^{\mathrm{T}}
$$

where \mathbf{W} is a $K \times K$ matrix of eigenvectors:

$$
\mathbf{W}=\left[\mathbf{w}_{1}\left|\mathbf{w}_{\mathbf{2}}\right| \ldots \mid \mathbf{w}_{K}\right]
$$

and \mathbf{D} is a $K \times K$ diagonal matrix of eigenvalues:

$$
\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{K}\right)
$$

The KL Transform

We can represent a sample \mathbf{x} of a multivariate Gaussian r.v. with covariance matrix \mathbf{C} in the basis \mathcal{W} formed by C's eigenvectors. This change of basis is termed the Karhunen-Loeve transform:

$$
[\mathbf{x}]_{\mathcal{W}}=\mathbf{W}^{\mathrm{T}} \mathbf{x}
$$

Because \mathbf{C} is symmetric, the \mathbf{w}_{k} are mutually orthogonal, and \mathbf{W}^{T} is unitary. Consequently, the KL transform (like the DFT) is a rotation in \mathbb{R}^{K} 。

The KL Transform (contd.)

- Question Let $\mathbf{u}=[\mathbf{x}]_{\mathcal{W}}$ be the representation of \mathbf{x} in the basis \mathcal{W} formed by the eigenvectors of \mathbf{C}. What is the density of \mathbf{u} ?
- Answer It is the multivariate Gaussian density with covariance matrix, \mathbf{D} :

$$
G^{\prime}(\mathbf{u})=\frac{1}{(2 \pi)^{\frac{K}{2}}|\mathbf{D}|^{\frac{1}{2}}} e^{-\frac{1}{2} \mathbf{u}^{\mathrm{T}} \mathbf{D}^{-1} \mathbf{u}}
$$

where $\mathbf{D}=\mathbf{W}^{\mathrm{T}} \mathbf{C W}$.

The Bivariate Case

In the bivariate case

$$
\mathbf{D}=\mathbf{W}^{\mathrm{T}} \mathbf{C} \mathbf{W}=\left[\begin{array}{cc}
\sigma_{u u} & 0 \\
0 & \sigma_{v v}
\end{array}\right] .
$$

Since D is diagonal,

$$
|\mathbf{D}|=\sigma_{u u} \sigma_{v v}
$$

and \mathbf{D}^{-1} has an especially simple form:

$$
\mathbf{D}^{-1}=\left[\begin{array}{cc}
1 / \sigma_{u u} & 0 \\
0 & 1 / \sigma_{v v}
\end{array}\right] .
$$

The Bivariate Case (contd.)

It follows that the multivariate Gaussian density with covariance matrix $\left[\begin{array}{cc}\sigma_{u u} & 0 \\ 0 & \sigma_{v v}\end{array}\right]$ is:

$$
G^{\prime}(u, v)=\frac{1}{2 \pi \sqrt{\sigma_{u u} \sigma_{v v}}} e^{-\frac{1}{2}\left(\frac{u^{2}}{\sigma_{u u}}+\frac{v^{2}}{\sigma_{v v}}\right)} .
$$

We observe that G^{\prime} is separable:

$$
G^{\prime}(u, v)=\frac{1}{\sqrt{2 \pi \sigma_{u u}}} e^{-\frac{u^{2}}{2 \sigma_{u u}}} \frac{1}{\sqrt{2 \pi \sigma_{v v}}} e^{-\frac{v^{2}}{2 \sigma_{v v}}} .
$$

Since the joint density function of u and v can be expressed as the product of the density function for u and the density function for v, we say that u and v are uncorrelated. Stated differently, knowing the value of u tells you nothing about the value of v !

Reducing Dimensionality

Since \mathbf{W}^{T} is unitary, its inverse is simply \mathbf{W}. Consequently, the KL transform can be inverted as follows:

$$
\mathbf{x}=\mathbf{W} \mathbf{u}
$$

which (in the general case of K dimensions) is simply:

$$
\mathbf{x}=u_{1} \mathbf{w}_{1}+u_{2} \mathbf{w}_{2}+\cdots+u_{K} \mathbf{w}_{K}
$$

Let \mathbf{u}^{\prime} be a vector of length $J \leq K$ consisting of the components of \mathbf{u} in the directions of eigenvectors with the J eigenvalues of largest magnitude. It is possible to recover, \mathbf{x}^{\prime}, an approximation to \mathbf{x}, from \mathbf{u}^{\prime} as follows:

$$
\mathbf{x}^{\prime}=u_{1} \mathbf{w}_{1}+u_{2} \mathbf{w}_{2}+\cdots+u_{J} \mathbf{w}_{J}
$$

Figure 2: Images from the ATT face database.

Figure 3: Some eigenfaces of images from the ATT face database.

