Matrix Vector Product is Linear
Let \mathbf{x} and \mathbf{y} be vectors of length, N, and let \mathbf{A} be an $N \times N$ matrix and where:

$$
\mathbf{y}=\mathbf{A} \mathbf{x}
$$

Matrix-vector product is linear because it satisfies the following two constraints: 1. $\mathbf{A}(\mathbf{x}+\mathbf{y})=\mathbf{A x}+\mathbf{A y}$ 2. $\mathbf{A}(c \mathbf{x})=c \mathbf{A} \mathbf{x}$
for scalar constant, c.

Matrix Vector Product is Linear (contd.)

It is is easy to show that matrix-vector product satisfies the first constraint:

$$
\sum_{j=0}^{N-1} A_{i j}\left(x_{j}+y_{j}\right)=\sum_{j=0}^{N-1} A_{i j} x_{j}+\sum_{j=0}^{N-1} A_{i j} y_{j}
$$

...and the second:

$$
\sum_{j=0}^{N-1} A_{i j} c x_{j}=c \sum_{j=0}^{N-1} A_{i j} x_{j} .
$$

Kronecker Delta Function

The Kronecker delta function is defined as follows:

$$
\delta(i)=\left\{\begin{array}{l}
1 \text { if } i=0 \\
0 \text { otherwise. }
\end{array}\right.
$$

$\underline{\text { Shift Matrix }}$

$$
\left.\begin{array}{l}
\mathbf{S}^{0}=\delta(i-j-0 \bmod 4)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{S}^{1}=\delta(i-j-1 \bmod 4)=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
\mathbf{S}^{2}=\delta(i-j-2 \bmod 4)=\left[\begin{array}{lllll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \\
\mathbf{S}^{3}=\boldsymbol{\delta}(i-j-3 \bmod 4)=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right) \\
0
\end{array} 0\right) 1 \quad 0
$$

Shift Matrix (contd.)

$$
\begin{aligned}
& \mathbf{S}^{0} \mathbf{x}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \\
& \mathbf{S}^{1} \mathbf{x}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2 \\
3
\end{array}\right] \\
& \mathbf{S}^{2} \mathbf{x}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
1 \\
2
\end{array}\right] \\
& \mathbf{S}^{3} \mathbf{x}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
4 \\
1
\end{array}\right]
\end{aligned}
$$

Shift-invariance
If for matrices, \mathbf{A} and \mathbf{B}, it is the case that:

$$
\mathbf{A B}=\mathbf{B A}
$$

then we say that the matrix product commutes. This property can be depicted using a commutative diagram:

$$
\begin{array}{ccc}
\mathbf{x} & \xrightarrow{\mathbf{B}} & \mathbf{B x} \\
\downarrow \mathbf{A} & & \downarrow \mathbf{A} \\
\mathbf{A x} \xrightarrow{\mathbf{B}} & \mathbf{y}
\end{array}
$$

Shift-invariance (contd.)
What structure must a 3×3 matrix, \mathbf{A}, possess if its product with each of \mathbf{S}^{n} for $1 \leq n \leq 3$ is to commute?

$$
\mathbf{A}=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

We observe that because:

$$
\mathbf{S}^{n}=\underbrace{\mathbf{S}^{1} \ldots \mathbf{S}^{1}}_{n}
$$

it suffices to show that A commutes with \mathbf{S}^{1}.

Shift-invariance (contd.)
Let's look at the effect of multiplying A by $\mathbf{S}^{\mathbf{1}}$:
$\mathbf{A} \mathbf{S}^{1}=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}b & c & a \\ e & f & d \\ h & i & g\end{array}\right]$
...and multiplying $\mathbf{S}^{\mathbf{1}}$ by \mathbf{A} :
$\mathbf{S}^{1} \mathbf{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=\left[\begin{array}{lll}g & h & i \\ a & b & c \\ d & e & f\end{array}\right]$

Shift-invariance (contd.)
Clearly, $\mathbf{A} \mathbf{S}^{1}=\mathbf{S}^{1} \mathbf{A}$, jiff:

$$
\left[\begin{array}{lll}
b & c & a \\
e & f & d \\
h & i & g
\end{array}\right]=\left[\begin{array}{lll}
g & h & i \\
a & b & c \\
d & e & f
\end{array}\right]
$$

Let's see if we can see any pattern in these equalities:

$$
\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}
$$

Shift-invariance (contd.)
What structure must an $N \times N$ matrix, A, possess if its product with each of \mathbf{S}^{n} for $1 \leq n \leq N$ is to commute?
$A(i, j)=A(i+n \bmod N, j+n \bmod N)$

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{N-1} \\
a_{N-1} & a_{0} & \ldots & a_{N-2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1} & a_{2} & \ldots & a_{0}
\end{array}\right]
$$

A matrix with the above structure is termed circulant.

Shift-invariance (contd.)

$$
\begin{aligned}
& \mathbf{A} \mathbf{S}^{0}=\mathbf{S}^{0} \mathbf{A}=\left[\begin{array}{llll}
a & b & c & d \\
d & a & b & c \\
c & d & a & b \\
b & c & d & a
\end{array}\right] \\
& \mathbf{A} \mathbf{S}^{1}=\mathbf{S}^{1} \mathbf{A}=\left[\begin{array}{llll}
b & c & d & a \\
a & b & c & d \\
d & a & b & c \\
c & d & a & b
\end{array}\right] \\
& \mathbf{A} \mathbf{S}^{2}=\mathbf{S}^{2} \mathbf{A}=\left[\begin{array}{llll}
c & d & a & b \\
b & c & d & a \\
a & b & c & d \\
d & a & b & c
\end{array}\right] \\
& \mathbf{A} \mathbf{S}^{3}=\mathbf{S}^{3} \mathbf{A}=\left[\begin{array}{llll}
d & a & b & c \\
c & d & a & b \\
b & c & d & a \\
a & b & c & d
\end{array}\right]
\end{aligned}
$$

Discrete Convolution

Recall that for a circulant matrix, \mathbf{A}, the following is true for all n :
$A(i, j)=A(i+n \bmod N, j+n \bmod N)$.
In particular, it is true when $n=-j$:

$$
A(i, j)=A(i-j \bmod N, 0)
$$

Recall that $\mathbf{y}=\mathbf{A x}$ can be written:

$$
\begin{aligned}
y_{i} & =\sum_{j=0}^{N-1} A(i, j) x_{j} \\
& =\sum_{j=0}^{N-1} A(i-j \bmod N, 0) x_{j} .
\end{aligned}
$$

Discrete Convolution (contd.)

Let

$$
h(i-j \bmod N)=A(i-j \bmod N, 0)
$$

then

$$
y_{i}=\sum_{j=0}^{N-1} h(i-j \bmod N) x_{j} .
$$

We say that \mathbf{y} is the discrete periodic convolution of \mathbf{h} and \mathbf{x} :

$$
\mathbf{y}=\mathbf{h} * \mathbf{x}
$$

Example

The weight matrix for a $1 D$ artificial retina applied to a simple step pattern:

$$
\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

Example (contd.)
The convolution kernel is the first column of the weight matrix:

$$
\begin{gathered}
\mathbf{h}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
-1
\end{array}\right] \\
y_{i}=\sum_{j=0}^{N-1} h(i-j \bmod N) x_{j}
\end{gathered}
$$

Operators

An operator is a function which takes one or more functions as arguments and returns a function as its value.

- The gradient operator:

$$
f \xrightarrow{\nabla} f^{\prime}
$$

where $f^{\prime}(x)=d f(x) / d x$.

- The addition operator:

$$
f, g \xrightarrow{+}\{f+g\}
$$

where $\{f+g\}(x)=f(x)+g(x)$.

- The convolution operator:

$$
\begin{gathered}
f, g \xrightarrow{*}\{f * g\} \\
\text { where }\{f * g\}(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y .
\end{gathered}
$$

Digression on High Level Languages

One advantage of high level languages (like Scheme) is that you can actually write operators:

$$
\begin{aligned}
& \text { (define opt } \\
& \quad \text { (lambda (f g) } \\
& \quad\left(\begin{array}{l}
\text { lambda }(x)
\end{array}\right. \\
& \quad(+(f \quad x) \quad(g x)))))
\end{aligned}
$$

Linear Operators

Let f and g be functions and let \mathcal{A} be an operator:

$$
\begin{aligned}
& f \xrightarrow{\mathcal{A}} \mathcal{A} f \\
& g \xrightarrow{\mathcal{A}} \mathcal{A} g .
\end{aligned}
$$

An operator is linear if and only if:

1. $\mathfrak{A}\{f+g\}=\mathcal{A} f+\mathfrak{A} g$
2. $\mathfrak{A}\{c \cdot f\}=c \cdot \mathfrak{A} f$
for scalar constant, c.

Examples
The gradient operator is linear:

$$
\begin{aligned}
f+g \xrightarrow{\nabla} & f^{\prime}+g^{\prime} \\
c \cdot f & \xrightarrow{\nabla} \cdot f^{\prime}
\end{aligned}
$$

Examples (contd.)

The convolution with h operator is linear:

$$
\begin{gathered}
f+g \xrightarrow[\longrightarrow]{* h} f * h+g * h \\
c \cdot f \xrightarrow{* h}\{c \cdot\{f * h\}\} \\
\{\{f+g\} * h\}(x)=\int_{-\infty}^{\infty}[f(y)+g(y)] h(x-y) d y \\
=\int_{-\infty}^{\infty} f(y) h(x-y) d y+\int_{-\infty}^{\infty} g(y) h(x-y) d y \\
=\{f * h+g * h\}(x)
\end{gathered}
$$

and

$$
\begin{gathered}
\{\{c \cdot f\} * h\}(x)=\int_{-\infty}^{\infty} c f(y) h(x-y) d y \\
=c \int_{-\infty}^{\infty} f(y) h(x-y) d y \\
=\{c \cdot\{f * h\}\}(x)
\end{gathered}
$$

Linear Operators

Linear operator, \mathcal{A}, takes function, f, as input and returns function, g, as output:

$$
g(t)=\int_{-\infty}^{\infty} A(t, \tau) f(\tau) d \tau
$$

It is easy to verify that \mathcal{A} is linear:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} A(t, \tau)[f(\tau)+g(\tau)] d \tau= \\
& \int_{-\infty}^{\infty} A(t, \tau) f(\tau) d \tau+\int_{-\infty}^{\infty} A(t, \tau) g(\tau) d \tau \\
& \text { and }
\end{aligned}
$$

$$
\begin{gathered}
\int_{-\infty}^{\infty} A(t, \tau) c f(\tau) d \tau= \\
c \int_{-\infty}^{\infty} A(t, \tau) f(\tau) d \tau
\end{gathered}
$$

Shift Operator

The shift operator, s_{Δ}, takes a function, f, as argument, and returns the same function shifted to the right by Δ :

$$
f \xrightarrow{s_{\Delta}} f_{\Delta}
$$

where $f_{\Delta}(t)=f(t-\Delta)$. An operator, \mathcal{A}, is shift-invariant, if and only if it commutes with the shift operator. This property can be depicted using a commutative diagram:

$$
\begin{array}{ccc}
f & \xrightarrow{s_{\Delta}} & f_{\Delta} \\
\downarrow \mathcal{A} & & \downarrow \mathcal{A} \\
\mathcal{A} f \xrightarrow{s_{\Delta}} & g
\end{array}
$$

Linear Shift-invariant Operators

Linear operator, \mathcal{A}, takes function, f, as input and returns function, g, as output:

$$
g(t)=\int_{-\infty}^{\infty} A(t, \tau) f(\tau) d \tau
$$

Let $s_{\Delta} f=f_{\Delta}$ and $s_{\Delta} g=g_{\Delta}$. If \mathcal{A} is shiftinvariant, then:

$$
g_{\Delta}(t)=\int_{-\infty}^{\infty} A(t, \tau) f_{\Delta}(\tau) d \tau
$$

However, $f_{\Delta}(\tau)$ is just $f(\tau-\Delta)$ and $g_{\Delta}(t)$ is just $g(t-\Delta)$:

$$
g(t-\Delta)=\int_{-\infty}^{\infty} A(t, \tau) f(\tau-\Delta) d \tau
$$

Adding Δ to t and τ throughout:

$$
g(t)=\int_{-\infty}^{\infty} A(t+\Delta, \tau+\Delta) f(\tau) d \tau
$$

Linear Shift-invariant Operators (contd.)

We conclude that the following must be true if \mathcal{A} is shift-invariant:

$$
A(t, \tau)=A(t+\Delta, \tau+\Delta)
$$

Observe that $A(t, \tau)$ is unchanged by adding Δ to both arguments. This means that the $2 D$ function, $A(t, \tau)$, is equal to a $1 D$ function of the difference of t and τ :

$$
A(t, \tau)=h(t-\tau)
$$

Consequently,

$$
g(t)=\int_{-\infty}^{\infty} h(t-\tau) f(\tau) d \tau
$$

This is the convolution integral. Consequently:

$$
g=h * f
$$

Linear Shift-invariant Operators (contd.)

Deep Thought: All linear shift invariant operators can be represented as convolutions.

