Marginal Probability Distribution

To compute $p_X(k)$, we sum $p_{XY}(i, j)$ over pairs of i and j where $i = k$:

$$p_X(k) = \sum_{\{i, j \mid i=k\}} p_{XY}(k, j)$$

$$= \sum_{j=-\infty}^{\infty} p_{XY}(k, j).$$
Sum of Discrete r.v.’s

Let Z be a discrete random variable equal to the sum of the discrete random variables X and Y. To compute $p_Z(k)$, we sum $p_{XY}(i, j)$ over pairs of i and j where $i + j = k$:

$$p_Z(k) = \sum_{\{i, j \mid i+j=k\}} p_{XY}(i, j).$$

Observe that $i + j = k$ iff $j = k - i$. It follows that

$$p_Z(k) = \sum_{i=-\infty}^{\infty} p_{XY}(i, k-i).$$

If X and Y are statistically independent, then $p_{XY}(i, j) = p_X(i)p_Y(j)$. It follows that

$$p_Z(k) = \sum_{i=-\infty}^{\infty} p_X(i)p_Y(k-i).$$
Sum of Discrete r.v.’s (contd.)

The *discrete convolution* of f and g, written $f \ast g$, is defined to be:

$$\{ f \ast g \}(k) = \sum_{i=-\infty}^{\infty} f(i)g(k-i).$$

Accordingly, if $Z = X + Y$, then

$$p_Z = p_X \ast p_Y.$$
Sum of Discrete r.v.’s (contd.)

Since \(i + j = k \) iff \(i = k - j \), we could just as easily have written \(p_Z(k) \) as follows:

\[
p_Z(k) = \sum_{j=-\infty}^{\infty} p_{XY}(k-j, j)
\]

\[
= \sum_{j=-\infty}^{\infty} p_X(k-j)p_Y(j).
\]

It follows that

\[
p_X * p_Y = p_Y * p_X
\]

and that convolution (like addition) is \textit{commutative}.\]
Difference of Discrete r.v.’s

Let Z be a discrete random variable equal to the difference of the discrete random variables X and Y. To compute $p_Z(k)$, we sum $p_{XY}(i, j)$ over pairs of i and j where $i - j = k$:

$$p_Z(k) = \sum_{\{i, j \mid i - j = k\}} p_{XY}(i, j).$$

Observe that $i - j = k$ iff $j = i - k$. It follows that

$$p_Z(k) = \sum_{i = -\infty}^{\infty} p_{XY}(i, i - k).$$

If X and Y are statistically independent, then $p_{XY}(i, j) = p_X(i)p_Y(j)$. It follows that

$$p_Z(k) = \sum_{i = -\infty}^{\infty} p_X(i)p_Y(i - k).$$
Difference of Discrete r.v.’s (contd).

The *discrete correlation* of \(f \) and \(g \), is defined to be:

\[
\{ f \ast g(-(.)) \}(k) = \sum_{i=-\infty}^{\infty} f(i)g(i-k).
\]
Marginal Probability Density

To compute $f_X(z)$, we integrate $f_{XY}(x, y)$ along the line $x = z$:

$$f_X(z) = \int_{-\infty}^{\infty} f_{XY}(z, y) dy$$
Sum of Continuous r.v.’s

Let Z be a continuous random variable equal to the sum of the continuous random variables, X and Y. To compute $f_Z(z)$, we integrate $f_{XY}(x,y)$ along the line $x + y = z$ or $y = z - x$:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{XY}(x, z-x) dx.$$

If X and Y are statistically independent, then $f_{XY}(x, y) = f_X(x)f_Y(y)$. It follows that

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x) dx.$$

The convolution of f and g, written $f \ast g$, is defined to be

$$\{f \ast g\}(v) = \int_{-\infty}^{\infty} f(u)g(v-u)\,du.$$

Accordingly, if $Z = X + Y$, then

$$f_Z = f_X \ast f_Y = f_Y \ast f_X.$$
Difference of Continuous r.v.’s

Let Z be a continuous random variable equal to the difference of the continuous random variables, X and Y. To compute $f_Z(z)$, we integrate $f_{XY}(x,y)$ along the line where $x - y = z$ or $y = x - z$:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{XY}(x,x - z) \, dx.$$

If X and Y are statistically independent, then $f_{XY}(x,y) = f_X(x) f_Y(y)$. It follows that

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(x - z) \, dx.$$
The correlation of f and g, is defined to be
\[
\{f \ast g(-(.))\}(v) = \int_{-\infty}^{\infty} f(u)g(u-v)du
\]
Accordingly, if $Z = X - Y$, then
\[
f_Z(z) = \{f_X \ast f_Y(-(.))\}(z)
\]
Law of Large Numbers

Let $x_1 \ldots x_N$ be samples of a r.v., X. It follows that $x_1 \ldots x_N$ are independent, identically distributed (i.i.d.) random variables. The Law of Large Numbers states that

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} x_i}{N} = \mu_X$$

i.e., the average of an infinite number of samples equals the expected value. Now define a new random variable Y:

$$Y = (X - \mu_X)^2$$

where $y_i = (x_i - \mu_X)^2$. Observe that N samples of $y_1 \ldots y_N$ are also i.i.d. random variables. Consequently,

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} y_i}{N} = \mu_Y = \lim_{N \to \infty} \frac{\sum_{i=1}^{N} (x_i - \mu_X)^2}{N} = \sigma_X^2.$$
Variance of Sum of Continuous r.v.’s

Let X and Y be two independent zero mean r.v.’s and let $Z = X + Y$, then

$$\sigma_Z^2 = \lim_{N \to \infty} \frac{\sum_{i=1}^{N} z_i^2}{N}$$

$$= \lim_{N \to \infty} \frac{\sum_{i=1}^{N} (x_i + y_i)^2}{N}$$

$$= \lim_{N \to \infty} \frac{\sum_{i=1}^{N} (x_i^2 + 2 x_i y_i + y_i^2)}{N}$$

$$= \lim_{N \to \infty} \left[\frac{\sum_{i=1}^{N} x_i^2}{N} + \underbrace{\frac{\sum_{i=1}^{N} 2 x_i y_i}{N}}_{0} + \frac{\sum_{i=1}^{N} y_i^2}{N} \right]$$

$$= \lim_{N \to \infty} \frac{\sum_{i=1}^{N} x_i^2}{N} + \lim_{N \to \infty} \frac{\sum_{i=1}^{N} y_i^2}{N}$$

$$= \sigma_X^2 + \sigma_Y^2.$$
Central Limit Theorem

If $x_1 \ldots x_N$ are independent samples of a random variable X and if

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} x_i}{N} = \mu_X = 0$$

and

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} x_i^2}{N} = \sigma^2_X = 1$$

then

$$F_Z(a) = \lim_{N \to \infty} P \left(\frac{\sum_{i=1}^{N} x_i}{\sqrt{N}} \leq a \right) =$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} e^{-z^2/2} dz.$$

In other words, the distribution of the sum Z of an infinite number of samples of a random variable X with zero mean and unit variance is normal.
Central Limit Theorem (contd.)

Assume that there exists a p.d.f. f_Z characterizing the distribution of the sum Z. It follows that the distributions of

$$Z = \lim_{N \to \infty} \frac{\sum_{i=1}^{N} x_{2i}}{\sqrt{N}} = \lim_{N \to \infty} \frac{\sum_{i=1}^{N} x_{2i+1}}{\sqrt{N}} = \lim_{N \to \infty} \frac{\sum_{i=1}^{2N} x_i}{\sqrt{2N}}$$

are all characterized by f_Z. However

$$\lim_{N \to \infty} \frac{\sum_{i=1}^{N} x_{2i}}{\sqrt{N}} + \lim_{N \to \infty} \frac{\sum_{i=1}^{N} x_{2i+1}}{\sqrt{N}} = \lim_{N \to \infty} \frac{\sum_{i=1}^{2N} x_i}{\sqrt{N}} = \lim_{N \to \infty} \frac{\sqrt{2} \sum_{i=1}^{2N} x_i}{\sqrt{2N}}$$

so that

$$P(Z + Z) = P(\sqrt{2} Z).$$
Central Limit Theorem (contd.)

Since the p.d.f. of a sum of independent r.v.’s is the convolution of the p.d.f.’s of the addends, it follows that

\[f_Z \ast f_Z = \frac{f_Z(g^{-1}(z))}{g'(g^{-1}(z))} \]

where \(g(z) = \sqrt{2} z \). It follows that \(f_Z \) characterizing \(Z \), the sum of samples of \(X \), must satisfy

\[f_Z \ast f_Z = \frac{1}{\sqrt{2}} f_Z \left(\frac{z}{\sqrt{2}} \right). \]
Convolution of Two Gaussians

For independent r.v.’s X and Y, the distribution $Z = X + Y$ equals the convolution of f_X and f_Y:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(z - x) f_Y(x) \, dx.$$

Substituting the normal density $N(0, 1) = f_X(x) = f_Y(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$ into the convolution integral yields

$$f_Z(z) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-x)^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx.$$
Convolution of Two Gaussians (contd.)

Solving the convolution integral yields

\[f_Z(z) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z-x)^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx \]

\[= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(2)}} \exp \left[-\frac{z^2}{2(2)}\right] \frac{1}{\sqrt{2\pi\left(\frac{1}{\sqrt{2}}\right)}} \exp \left[-\frac{(x-z)^2}{2\left(\frac{1}{\sqrt{2}}\right)^2}\right] \, dx \]

\[= \frac{1}{\sqrt{2\pi(2)}} \exp \left[-\frac{z^2}{2(2)}\right] \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi\left(\frac{1}{\sqrt{2}}\right)}} \exp \left[-\frac{(x-z)^2}{2\left(\frac{1}{\sqrt{2}}\right)^2}\right] \, dx \]

\[= \frac{1}{\sqrt{2\sqrt{2}\pi}} e^{-\frac{(z/\sqrt{2})^2}{2}} \]

\[= \frac{1}{\sqrt{2}} f_X \left(\frac{z}{\sqrt{2}} \right) \]

\[= N(0,2) \]

which is normal with twice the variance.
Maximum of Exponential r.v.’s

An apple tree and a peach tree stand on a hilltop. The trees drop fruit at random times. On average, one must wait $1/p_1$ minutes for an apple to drop and $1/p_2$ minutes for a peach to drop. How many minutes on average must a person wait to collect both an apple and a peach?

$$\langle t_{\text{max}} \rangle = \int_0^\infty \int_0^\infty \max(t_1, t_2) \frac{p_1 p_2}{e^{p_1 t_1} e^{p_2 t_2}} dt_1 dt_2$$

$$= \int_0^\infty \int_{t_2}^\infty t_1 \frac{p_1 p_2}{e^{p_1 t_1} e^{p_2 t_2}} dt_1 dt_2 + \int_0^\infty \int_{t_1}^\infty t_2 \frac{p_1 p_2}{e^{p_1 t_1} e^{p_2 t_2}} dt_2 dt_1$$

$$= \int_0^\infty \int_{t_2}^\infty \frac{p_1}{e^{p_1 t_1}} dt_1 \frac{p_2}{e^{p_2 t_2}} dt_2 + \int_0^\infty \int_{t_1}^\infty \frac{p_2}{e^{p_2 t_2}} dt_2 \frac{p_1}{e^{p_1 t_1}} dt_1$$

$$= \int_0^\infty \frac{p_1}{p_1 e^{p_1 t_2}} \frac{t_2 + 1}{e^{p_2 t_2}} dt_2 + \int_0^\infty \frac{p_2}{p_2 e^{p_2 t_1}} \frac{t_1 + 1}{e^{p_1 t_1}} dt_1$$

$$= \frac{1}{p_1} - \frac{p_1}{(p_1 + p_2)^2} + \frac{1}{p_2} - \frac{p_2}{(p_1 + p_2)^2}$$

$$= \frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p_1 + p_2}$$
Figure 1: a) Distribution of a random variable. b) Distribution of sum of two i.i.d. random variables. c) Distribution of sum of three i.i.d. random variables. d) Distribution of sum of four i.i.d. random variables.