Space-Frequency Atoms
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Figure 1: Space-frequency atoms.
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Windowed Fourier Transform
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Figure 2: A Gabor function.
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Figure 3: A second Gabor function.



Windowed Fourier Transform (contd.)

e Analysis
F(u,b) = (f,w(x— b)e‘Z”“X>
_/ F(x)W(X— b)e 12 dx
e Synthesis

_ / / F (U, b)w(X— b)elZ™ du db



What is a Wavelet?

All basis functions (daughter wavelets) are gen-
erated bytrandation anddilation of a mother

wavelet:
Wan(X) = \jé (X b)

whena < 1 it shrinks the wavelet. Thg/a fac-
tor keeps the norm constant:

iSolk W

= va||f(x)

u) dX




What is a Wavelet? (contd.)

The mother wavelety, must satisfy thadmis-
sibility criterion:

ooL/I\J 2
v - [P s

whereW is the Fourier transform o. This
means that:

o |¥(s)|? decays faster than/Is
e ¥(0)=0.



What is a Wavelet? (contd.)
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Figure 4: A Morlet wavelet.
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Figure 5: A second Morlet wavelet.



Vanishing Moments

e Then-th moment of¥ is defined to be:
M {W) — / " W(t)dt.
o If Mp{W} = 0 thenW¥ has onevanishing mo-

ment.
e Because

Mo{ W} — / W(x)dx = P(0) = 0
all wavelets have at least one vanishing mo-

ment.

o If Mp{W} = M{W} =0, then¥ has two
vanishing moments, etc.



Vanishing Moments (contd.)

e If W has one vanishing moment, then
(a0, Wap) = 0.
¢ If W has two vanishing moments, then
(agX+ag, Wap) = 0.
e If W hasn vanishing moments, then
(An-1X""T+ -+ aX+ a9, Wap) =0,

l.e., the daughter wavelets are orthogonal to
any polynomial of degree less than

¢ Vanishing moments are the reason why smooth
signals have sparse representations in wavelet
bases.



Three Kinds of Wavelet Transform:

e Continuous wavelet transform

analysis synthesisinput| output
discrete
continuous < & & &
e \Wavelet series transform
analysis synthesisinput| output
discrete >
continuous < & &
e Discrete wavelet transform
analysis synthesisinput| output
discrete | & & IR,

continuous




Continuous Wavelet Transform

e Analysis

( f LIJab

— / f LIJab
o SyntheS|s

o |U 2
co— | V)P,

—w |

where

dbd—a



Two Dimensional Continuous Wavelet Transforn

e Analysis

F(aboby) = (1, ¥ab,n,)
= _m/_mf(x,y)wabxby(x y) dxdy

e Synthesis

f(xy) =
1 00 00 00 da
C—LP /oo /oo /oo F (a’ bX7 bY) LIJa,bx,by(Xa y) de dby ?

where

1 X—Dby y—
LI"c’:l,bx,by(xa y) ‘ LIJ ( X7 y by)

E! a a

2
L.J_// YUV
w1/ |U]2+ V]2

and




Wavelet Transform as Convolution

Recall that the relationship between daughter
wavelet¥, , and mother wavelé¥ involves both
translation and dilation:

Wab(X) = %LIJ (%) .

Let’s define a functiot, to represent a daugh-
ter which is dilated by a fact@but is not trans-
lated:

Wa(X—b) =Wy p(X) = %LIJ (%)

and a functionW,(x) to represent a reflected
and conjugated instance %%

Wo(X) = Wa(—X).




Wavelet Transform as Convolution (contd.)

Using W, and¥, the forward and inverse con-
tinuous wavelet transforms can be expressed as
follows:

e Analysis
F(a,b) = (f,Wap)
_ /_ () Wa(X—Db) dx
= [ £(Wa(b—x) dx
— {f *ma}(b)
o Synthesis

CLIJ
da

_ c_w/_m/_m{f*w""} )LIJa(x—b) db

1 r° — da
_ C—w/_oo{f*LIJa*LIJa}(x)—

a2



Wavelet Series Transform

Is it possible to replace the integrals oweand

b in the synthesis formula with sums? Can we
represent any in a Hilbert spacey , using a
discrete setS, of wavelet coefficients? If for all

f € # there existA > 0 andB < o such that

A< S [(f, Wap) 2 < BI|F|P
(a,b)eS
thenW,,, for (a,b) € S form a frame fors .

Furthermore, there exists a set of functidig,
for (a,b) € Swhich form adual frame for s :

1 2 17 2 1 2
SRS S (L Ban) P < SIIFI

(a,b)eS



Wavelet Series Transform (contd.)

The waveletsi¥, ,, are used for analysis:
(F,Wap) = / f (X)Pap(X) dx

and the waveletsy, ,,, are used for synthesis:

f) =y (f,Wap)WPap(x).

(a,b)eS




Self-inverting Wavelet Series

If A= B, then
[(f, Wap) |2 = Al|f]|7
(a,b)eS

and theW,;, for (a,b) € Sform atight-frame
for sr , In which case

f) =5 5 (f,Wap)Wap(x).
(a,b)eS

Such frames are said to lself-inverting be-
cause¥, p(X) = 2Wap(X).



Redundancy

Recall that for a tight-frame

Z(a,b)es‘ < f, L|J<’:1,b> ‘2

| F1[° |
Assuming that|W|| = 1, thenA provides a mea-
sure of the redundancy of the expansion, I.e.,
the degree obvercompleteness. If A= 1 there
IS no redundancy, and the expansioari$honor-

mal. How can one find wavelet series trans-
forms with no redundancy?

A=




Dyadic Sampling

A sampling pattern igdyadic if the daughter
wavelets are generated by dilating the mother
wavelet by 2 and translating it bk2!:

1 X — k2!
. ———) _
LIJJyk(X) \/5 ( 2] )
Dyadic sampling is optimal because the space

variable is sampled at the Nyquist rate for any
given frequency.




Dyadic Sampling (contd.)
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Figure 6: Dyadic sampling pattern.



