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Visual cortex: Looking into a Klein bottle
Nicholas V. Swindale

Arguments based on mathematical topology may help
in understanding the organization of topographic maps
in the cerebral cortex.
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The English neurologist Hughlings Jackson inferred the
presence of a topographic map of the body musculature in
the cerebral cortex more than a century ago, from his
observations of the orderly progressions of seizure activity
across the body during epilepsy. Topographic maps of one
kind or another are now known to be a ubiquitous feature
of cortical organization, at least in the primary sensory and
motor areas. Every medical student learns that there is a
distorted map of the body surface in somatosensory cortex,
known as the ‘homunculus’, and that in the visual cortex
there is an orderly map of visual space.

Continuous mappings such as these, from one two-dimens-
ional surface onto another, are easy to visualize. However
the cortex seems to be capable of much more complex
mappings. In a previous dispatch [1], I discussed theoretical

work which suggested that many properties of visual cortex
organization might be a consequence of mapping a five-
dimensional stimulus space onto a two-dimensional surface
as continuously as possible. Recent experimental results,
which I shall discuss here, add to this complexity because
they show that a stimulus attribute not considered in the
theoretical studies — direction of motion — is also syst-
ematically mapped on the surface of the cortex. This adds
to the evidence that continuity is an important, though not
overriding, organizational principle in the cortex. I shall
also discuss a demonstration that certain receptive-field
properties, which may be indirectly related to direction
selectivity, can be represented as positions in a non-
Euclidian space with a topology known to mathematicians
as a Klein bottle. First, however, it is appropriate to cons-
ider the experimental data.

It has long been known that neurons in the visual cortex
are selectively responsive to the orientation of an edge or
line stimulus. Many studies have examined how prefer-
ence for stimulus orientation varies with position in the
cortex, and have shown a common pattern of organiza-
tion in a variety of species, including cats, ferrets, tree
shrews and monkeys (Fig. 1). Nearby regions in the
cortex typically have similar preferred orientations, and
preferences generally change smoothly with position [2].
In all species so far examined, ‘iso-orientation domains’ —
neighbourhoods of cells with similar orientation prefer-
ences — tend to be short narrow strips with pointed ends,
with a periodic spacing of about 1 mm. Different domains
often meet at points known as singularities. These points
are easily identified in Figure 1, in which the colour cycle
red–orange–yellow–green–blue–violet represents the 180 °
cycle of possible orientation preferences.

There are only two ways in which a single set of orien-
tations (or colours) can be smoothly arranged around a
singularity: one in which the orientations rotate clockwise
as one moves in a clockwise loop around the singularity
(Fig. 2a), and the other in which the orientations rotate
anti-clockwise (Fig. 2b). Mathematicians classify these
arrangements as half-rotation singularities of sign +½ and
–½, respectively, because a full cycle of orientations
covers a range of 180°, which is only half of the possible
360° range of angles in a rotation. To my eye, at least,
positive singularities resemble a horseshoe crab, whereas
negative singularities resemble a scalloped triangle. There
are approximately equal numbers of the two types of sing-
ularity in the visual cortex, with a density of between
three and eight per square millimetre, depending some-
what on location and species [2,3].

Figure 1

How stimulus orientation is mapped onto the surface of the visual
cortex. Colours show the stimulus orientation which best activates
each region of the cortex. Note that the preferred orientation changes
smoothly with position everywhere, except at singularities, where a
single complete set of colours meets. The data were obtained by
optical recording from the visual cortex of a macaque monkey [2].
(Reproduced with permission from [2].)
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The functional significance of the singularities, if there is
one, has yet to be identified. It is possible that they are an
accidental outcome of a developmental process which
does not specify in advance the orientation specificity of
each region of cortex. Initial preferences might either be
random, or pre-specified in a small number of different
locations; in either case, if one tries to generate a continu-
ously varying pattern of orientations, singularities are
almost certain to result. Try drawing several randomly ori-
ented lines on a piece of paper and interpolating smoothly
varying orientations between them, and you will often
find that the smooth pattern is unavoidably interrupted by
singularities.

Many cells in the visual cortex respond selectively not
only to the orientation of an edge, but also to the direction
in which it is moved. For example, some cells respond to a
vertical edge only when it moves to the left, others will
respond when the edge moves to the right. There are also
non-selective cells which respond well to either direction
of motion, while nevertheless being highly selective for
orientation. Direction selectivity is a common property of
neurons in the primary visual cortices (areas 17 and 18) of
mammals such as cats and ferrets, although in primates
this property is most fully developed in the visual area
known as medio-temporal (MT) cortex (or V5).

The preferred direction for moving long bars and edges
will, almost by definition, be orthogonal to the preferred
orientation, in one of two possible ways. For shorter bars,
it is possible for direction and orientation preference to be
unrelated, although it seems that preferences are usually
close to orthogonal [4]. (This may be explained by refer-
ence to the so-called ‘aperture problem’, which asserts the
impossibility of determining the velocity of a moving edge
when only a small portion of it is visible; the brain may
solve the problem by first coding the velocity of the edge

in a direction perpendicular to its orientation, and then
extracting the actual velocity by combining velocity infor-
mation from differently oriented edges of the same
object.) Given this, and evidence that the direction prefer-
ences of nearby neurons tend to be similar [3–6], it is of
interest to consider how an orientation map, containing
numerous singularities of sign ±½, might constrain the
organization of a direction preference map.

It is not difficult to see that, if direction preferences are
arranged as continuously as possible around a half-rotation
orientation singularity, only half of the complete range of
direction preferences can be present (Fig. 2c). If a loop is
drawn around a singularity, orientations will change
continuously along its circumference, but direction
preferences must necessarily flip once, or an odd number
of times. This argument holds for any size or shape of
loop, provided only one half-rotation singularity is present
inside. As a result, at least one (or an odd number) of line
singularities, across which direction preferences flip by
180°, must extend from each orientation singularity.
These lines can begin and end only in singularities,
although closed loops are possible, as are line crossings. It
is easy to verify these points diagrammatically, by
constructing smoothly changing patterns of lines and
orthogonal arrows.

Arguments that cortical maps of direction preference
might have these properties were first put forward almost
10 years ago [3]. At that time, the evidence [3–6] sug-
gested some degree of local continuity, while surface maps
obtained from closely spaced microelectrode recordings
allowed tentative reconstructions of line and point singul-
arities in area 18 of the cat [3]. This evidence was not
completely convincing, however — it was possible that
interruptions and reversals in direction preference might
be more numerous than the mapping studies suggested,

Figure 2

(a) (b) (c) (d)

(a,b) Arrangement of orientations giving rise to half-rotation
singularities: (a) of sign +½, and (b) of sign –½. (c) An attempt to map
direction preferences continuously onto two nearby orientation
singularities, showing the necessity of connecting them by a line
singularity in direction preference. (d) A detail from a combined

orientation and direction preference map obtained by Weliky et al. [9].
Colours code for orientation preference and arrows show direction
preference. An orientation singularity is present in the centre of the
figure, and a line singularity in direction preference originates in it. The
scale bar = 0.2 mm. (Reproduced with permission from [9].)



and it was not clear what might happen to direction prefer-
ences close to a line singularity. If direction preferences
deviated from being orthogonal to the preferred orienta-
tion, the topological arguments would be weakened or
invalidated; if the direction preferences disappeared, the
singularity would effectively vanish.

It now appears that the arrangement suggested by the
topological arguments may in fact be correct. A study of
area MT of the owl monkey [7], in which neuronal
responses to stimuli moving in different directions were
measured using the optical recording technique [2], has
shown that direction preference varies continuously across
the surface of the cortex, except in elongated regions
which extend from, and connect together, half-rotation
orientation singularities. A preliminary report from the
same laboratory [8] suggested there is a similar map in area
18 of the cat. Recently, Weliky et al. [9] have demon-
strated the presence of an ordered map of direction prefer-
ence in the visual cortex of the ferret: here, narrow strips
of poor direction selectivity divide regions with similar
preferred orientations but opposite direction preferences
(Fig. 2d). As in the owl monkey, the linear strips intersect
with the orientation singularities.

Tanaka [10] has also applied topological arguments to the
organization of the visual cortex. The starting point is the
two-dimensional Gabor function commonly used to model
the receptive-field profiles of simple cells [11], which
make up a substantial percentage of visual cortical
neurons. This function has associated with it an orienta-
tion and a phase angle, which, like direction preference, is

cyclic over a 360° range. Any combination of orientation
and phase angles can be plotted as a position in a rectangle
on a two-dimensional plane; if the edges of the rectangle
are joined up, then a surface across which these parame-
ters vary continuously is formed. The only way to do this,
however, is to construct the curious object known as a
Klein bottle, which has a single closed surface and no
interior (Fig. 3).

This result allows Tanaka to investigate the likely
properties of a cortical map in which receptive-field
orientation and spatial phase vary smoothly. The technique
used to do this comes from a branch of mathematics known
as homotopy theory, and considers the behaviour of a loop
drawn on the surface of the Klein bottle. For most biologi-
cally plausible mappings, in which points on the surface of
the bottle are mapped continuously onto small regions of
cortex, it will generally be the case that any loop on the
surface of the bottle will map to a loop on the cortex. If the
loop on the bottle can be shrunk to a point, the cortical
region inside it does not contain a singularity. This will be
true of many loops, but not all — for example, the two
drawn on the Klein bottle in Figure 3 cannot be shrunk to a
point, no matter how they are deformed or moved across
the surface of the bottle. The corresponding line on the
cortex will therefore encircle a singularity, which would be
either an orientation or a phase singularity, depending
whether the loop is of the type labelled l or of the type
labelled n in Figure 3.

This is an elegant demonstration, although unfortunately
there is little compelling experimental evidence that spatial
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Demonstration of how a Klein bottle may be constructed from the
symmetry properties of simple cell receptive fields. On the far left,
receptive-field orientation is plotted on the horizontal axis, and
receptive-field phase, which corresponds to the layout of excitatory
(white) and inhibitory (black) subregions within the receptive field, is

plotted on the vertical axis. Any combination of orientation and phase
can be represented as a position within the rectangle. A continuous
surface across which these parameters vary smoothly can (only) be
constructed by joining together opposite edges of the rectangle to
form a Klein bottle, as shown on the far right. (Modified from [10].)



phase varies systematically with position in the cortex.
Given the cortex’s liking for continuity, however, this may
yet turn out to be the case. Even if phase is not systemati-
cally mapped, Tanaka’s arguments will apply equally well
to other properties that can be shown to be topologically
equivalent to orientation and phase. Although, at first sight,
direction selectivity might seem to be such a property,
there are some important differences. Firstly, receptive
field phase and direction preference have been found
experimentally to be unrelated, although other kinds of
phase relationship are important in many models of direc-
tion preference. Secondly, in Tanaka’s formulation, smooth
reversals in direction preference are allowed, because of the
existence of intermediate values of phase corresponding to
a lack of direction selectivity — these are the symmetric
fields with phase values of 0° or 180°. This is probably the
reason why line singularities are not predicted by this
analysis.

The new experimental data suggest the existence of
common organizing principles in the cortex, inasmuch as
the maps of orientation and direction preference found in
ferret area 17, cat area 18 and owl monkey area MT are
similar. Continuity seems to be important, as observed for
many other variables, although it now seems that the
cortex is not averse to a clean cut when continuity cannot
be achieved. It is nevertheless a bit of a puzzle why the
direction map is as discontinuous as it is. It would not be
difficult, in principle, to replace the half rotation orienta-
tion singularities with point direction singularities, around
which a full 360° cycle of direction preferences could be
arranged, together with two complete sets of orientation
domains: this would render the line singularities unneces-
sary. That this does not occur suggests, perhaps, that the
orientation map develops first, and that the direction map
is forced to conform to it at a later stage. Alternatively,
there may be a functional advantage in having neurons
with similar orientation preferences, but opposing direc-
tion preferences, brought close together in some regions of
the cortex. Whatever the answer, reasoning based on topo-
logical arguments may be increasingly helpful in attempt-
ing to understand how the world, Klein bottles and all, is
unfolded onto the surface of the cortex.
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