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Sets of neuronal tuning curves, which describe the responses of neurons
as functions of a stimulus, can serve as a basis for approximating other
functions of stimulus parameters. In a function-approximating network,
synaptic weights determined by a correlation-based Hebbian rule are
closely related to the coef�cients that result when a function is expanded
in an orthogonal basis. Although neuronal tuning curves typically are
not orthogonal functions, the relationship between function approxima-
tion and correlation-based synaptic weights can be retained if the tuning
curves satisfy the conditions of a tight frame. We examine whether the
spatial receptive �elds of simple cells in cat and monkey primary visual
cortex (V1) form a tight frame, allowing them to serve as a basis for con-
structing more complicated extrastriate receptive �elds using correlation-
based synaptic weights. Our calculations show that the set of V1 simple
cell receptive �elds is not tight enough to account for the acuity observed
psychophysically.

1 Introduction

There are a number of parallels between representation and learning in neu-
ral networks and methods of functional expansion in mathematical analysis.
Populations of neurons with responses tuned to properties of a stimulus may
be well suited for approximating functions of stimulus parameters (Poggio,
1990; Poggio & Girosi, 1990; Girosi, Jones, & Poggio, 1995). If certain condi-
tions are satis�ed, such a population can act as a highly ef�cient substrate
for function representation. Accurate representation of a given function de-
pends critically on the synaptic weights connecting input and output neu-
rons. These weights are often adjusted with a delta-type learning rule that
is ef�cient but not biologically plausible. However, if the tuning curves of
the input neurons form what is called a tight frame (Daubechies, Gross-
mann, & Meyer, 1986; Daubechies, 1990, 1992), function approximation can
be achieved using a more biologically reasonable Hebbian or correlation-
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Figure 1: A feedforward network for function approximation. The input neu-
rons at the bottom of the �gure respond with �ring rates that are functions of the
stimulus variable x. The �ring rate of input neuron j is fj(x). The upper output
neuron is driven by the input neurons through synaptic connections; wj repre-
sents the strength, or weight, of the synapse from input neuron j to the output
neuron. The task is to make the �ring rate R of the output neuron approximate
a given function F(x).

based rule for the synaptic weights. We investigate here whether the simple
cells of primary visual cortex provide such a basis.

To introduce the hypothesis to be tested, we begin with a simple example.
Consider a population of N neurons that respond to a stimulus by �ring at
rates that depend on a single stimulus parameter x. The �ring rate of neu-
ron j as a function of x, also known as the response tuning curve, is fj(x). We
wish to examine whether such a population can generate an approximation
of another function F(x) that is not equal to any of the input tuning curves.
Figure 1 shows a simple network for function approximation. In this net-
work, a population of neurons acting as an input layer drives a single output
neuron through a set of synapses. The target function F is represented by
the �ring rate of the output neuron. The weight of the synapse connecting
input neuron j to the output neuron is denoted by wj. Following standard
neural network modeling practice, we write the �ring rate R of the output
neuron in response to the input x as a synaptically weighted sum of the
input �ring rates,

R =
NX

j=1

wj fj(x). (1.1)

If R = F(x), or at least R ¼ F(x) to a suf�ciently high degree of accuracy,
the tuning curve of the output neuron will provide a representation of the
target function. The problem is to �nd a set of input tuning curves, and the
synaptic weights corresponding to these tuning curves, that produces an
output response close to the target function.

The expansion of a function as a weighted sum of other functions is a
standard problem in mathematical analysis. In the limit N ! 1, any set
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of functions that provides a complete basis over the range of x values con-
sidered can be used. Completeness is not very restrictive, but an additional
condition is usually applied. The weights wj that make

F(x) =
1X

j=1

wj fj(x) (1.2)

can be computed easily if the basis functions fj are orthogonal and normal-
ized so that

Z
dy fi(y) fj(y) = d ij, (1.3)

where d ii = 1 for all i and d ij = 0 for all i 6= j. In this case the weights are
given by

wj =
Z

dy fj(y)F(y). (1.4)

Equation 1.4 for the weights is closely related to forms of Hebbian and
correlation-based learning commonly used in neural networks. A correlation-
based rule sets the synaptic weights to values given by

wj = h fjRi, (1.5)

where the brackets indicate an average over stimuli. Equation 1.5 is equiv-
alent to the statement that the synaptic weight is proportional to the corre-
lation of the �ring rates of the pre- and postsynaptic neurons. The idea that
synaptic weights are related to correlations in pre- and postsynaptic �ring
is a standard hypothesis going back to the work of Hebb (1949). Often this
principle is expressed in the form of a learning rule that adjusts the weights
incrementally toward their desired values during a training period.

We can also think of equation 1.5 as a consistency condition required
for the maintenance of weights at their correct values. Suppose that a net-
work has been set up to approximate a given function, so that R = F(x)
to a high degree of accuracy. In order for the network to function prop-
erly over an extended period of time, some mechanism must maintain the
weights at values that produce this desired output. If synaptic weights are
maintained by a process that uses a correlation-based rule, condition 1.5
can be interpreted as a consistency condition on maintainable weights. In
this interpretation, the Hebbian rule is applied continuously; there is no
distinct training period. The average over stimuli in equation 1.5 is then
over all stimuli typically encountered, and the output �ring rate R can be
approximated by the function F(x). Thus, the consistency condition is

wj = h fj(x)F(x)i. (1.6)
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If all stimulus values x occur with equal probability, the average over stimuli
is proportional to an integral over x, and the weights given by equations 1.4
and 1.6 are proportional to each other. Thus, the Hebbian consistency con-
dition is equivalent to the formula for the coef�cients of an orthogonal
expansion.

The relationship between equation 1.4 and correlation-based synaptic
weights suggests a close relationship between Hebbian ideas about synaptic
plasticity and standard mathematical approaches to functional expansion.
Unfortunately, a direct link of this type is inappropriate because most sets
of neuronal tuning curves are highly overlapping and far from orthogonal.
However, all is not lost. What happens if the values of the weights given by
equation 1.4 are used in equation 1.1 even when the input tuning functions
are not orthogonal? This question can be answered simply by substituting
these weights into equation 1.1:

R =
NX

j=1

Z
dy fj(y)F(y) fj(x). (1.7)

If we interchange the order of summation and integration and de�ne

D(x, y) ´
NX

j=1

fj(x) fj(y), (1.8)

we �nd that the output �ring rate is a convolution of the target function
with D,

R =
Z

dy D(x, y)F(y). (1.9)

By computing the D function for a given set of input tuning curves, we can
determine how accurately a set of neurons can represent a function using
synaptic weights given by equation 1.4. The output �ring rate in equation 1.9
will be exactly equal to the target function if D(x, y) = d (x ¡ y), since

R =
Z

dyd (x ¡ y)F(y) = F(x), (1.10)

by the de�nition of the Dirac d function. The condition D(x, y) = d (x ¡ y)
is less restrictive than the orthogonality condition. A set of functions fj that
satisfy D(x, y) = d (x ¡ y) is called a tight frame (Daubechies et al., 1986;
Daubechies, 1990, 1992).

A �nite number of well-behaved tuning curves can never generate a
true d function in equation 1.8, but they can create a good approximation
to one. If the integral of D(x, y) over y is one for all values of x and if
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D(x, y) is signi�cantly different from zero only for values of y near x, the
integral in equation 1.9 is approximately equal to F(x), provided that F
varies more slowly than D. Thus, �nite sets of tuning curves can act as
approximate tight frames. The importance of D(x, y) is that, as a function
of y, its width determines the resolution with which an output function can
be approximated using a correlation rule like equation 1.6 for the synaptic
strengths. For this reason, it is interesting to examine D functions for real
neuronal tuning curves. The D function provides a useful characterization
of the computational capabilities of a population of neurons for function
expansion.

To apply ideas about tight frames to real neural circuits, we must �nd
areas where function approximation may be taking place. Primary visual
cortex seems to be a good candidate. Neurons in primary visual cortex pro-
vide the �rst cortical representation of the visual world, and their receptive
�elds provide a basis set from which the more complicated receptive �elds
of extrastriate neurons are constructed. If the tuning curves of simple cells
form a tight frame, the construction of morecomplicated representations us-
ing an architecture like that in Figure 1 can be based on Hebbian synapses
whose ef�cacy is maintained by correlation-based rules of the form given
by equation 1.6.

To investigate these ideas, we will compute the D function (and a related
function K) for the receptive �elds of simple cells in the primary visual
cortices of cats and monkeys. This will allow us to determine how well
the receptive �eld functions of simple cells collectively approximate a tight
frame. Lee (1996) has explored the conditions under which sets of �lters with
properties like those of simple cells satisfy the mathematical de�nition of
a tight frame. We will use the experimentally measured �lter distributions
to determine explicitly the resolution with which simple cells can gener-
ate arbitrary visual �lters for downstream neurons using correlation-based
synaptic weights.

2 Function Approximation by Simple Cells

Representation of the visual world is more complicated than the simpli�ed
scenario described in section 1, so we start by recasting the basic problem
in terms that are appropriate for this application. Simple cell responses can
be expressed approximately through spatiotemporal linear �lters acting on
visual image intensity, but we will focus exclusively on the spatial aspects
of these responses. If I(x) is the luminance (relative to background) of an
image that appears at the point x on the retina, where x is a two-dimensional
vector, the �ring rate of simple cell j is approximated as

rj = g
Z

dx fj(x)I(x), (2.1)



318 Emilio Salinas and L. F. Abbott

where g is an overall scale factor determining the magnitude of the �ring
rate. Because this expression can be positive or negative, we must interpret
it as the difference between the �ring rates of two neurons having receptive
�eld �lters C fj and ¡ fj.

The �lter functions fj for simple cells are often �t using plane waves
multiplied by gaussian envelopes, known as Gabor functions (Daugman,
1985; Jones & Palmer, 1987; Webster & De Valois, 1985),

fj(x) =
1

2p s2
j

exp(¡
|x ¡ aj|2

2s2
j

!
cos(kj ¢ x ¡ wj). (2.2)

These �lters are parameterized by the receptive �eld center a, receptive �eld
envelope width s, preferred spatial frequency k ´ |k | , preferred orientation
h (the direction perpendicular to k), and spatial phase w . For simplicity, we
restrict ourselves to circular rather than elliptical receptive �eld envelopes.
We have veri�ed that for values in the physiologically measured range, el-
liptical receptive �elds give essentially the same results reported below for
circular receptive �elds. We have included a factor of 1/ s2 in the normaliza-
tion of the Gabor function so that neurons with different �lters give similar
maximum �ring rates when the optimum images are presented with a given
overall amplitude.

In the case of visual responses, the �lter functions �ll the role that the
tuning curves played in the example given in section 1. Similarly, the target
function we wish to represent in this case is a �lter function. In other words,
we attempt to construct a downstream neuron that is selective for some
target function or target image F(x). The target response is given by

R = G
Z

dz F(z)I(z), (2.3)

with G the scale factor for the output rate. For �xed image power, the max-
imum value of R is evoked when I is equal to the target function F. This
output neuron is driven, through synaptic weights, by the responses of a
population of simple cells, so that

R =
NX

j=1

wjrj = g
NX

j=1

wj

Z
dx fj(x)I(x), (2.4)

where we have used equation 2.1. Again we impose the condition that
synaptic weights are equal to the average product of pre- and postsynaptic
�ring rates, assuming that the postsynaptic neuron �res as prescribed by
equation 2.3. The weights are then given by

wj = hrjRi = Gg
Z

dydz fj(y)F(z)hI(y)I(z)i. (2.5)



Simple Cells and Tight Frames 319

In this case the average over stimuli, denoted by angle brackets, is an av-
erage over the ensemble of visual images. Substituting these weights into
equation 2.4, we �nd

R = Gg2
Z

dxdz K(x, z)F(z)I(x), (2.6)

with

K(x, z) =
Z

dy D(x, y)hI(y)I(z)i (2.7)

and

D(x, y) =
NX

j=1

fj(x) fj(y). (2.8)

Equation 2.6 tells us that the �ring rate of the output neuron is propor-
tional to a �ltered integral of the image,

R = Gg2
Z

dx Fef f (x)I(x). (2.9)

The effective �lter Fef f is a smeared version of the desired �lter F and is
given by

Fef f (x) =
Z

dy K(x, y)F(y). (2.10)

The condition for perfect function representation is then K(x, y) = d (x ¡ y),
and the resolution with which a given �lter function can be represented is
related to the degree to which K approximates ad function.

To determine how well simple cells approximate a tight frame, we �rst
compute both the D and K functions. An interesting aspect of the com-
putation of D from equation 2.8 is that it involves not only the form of the
receptive �eld �lters of simple cells, but also the distribution of their param-
eters across the population of cortical neurons. Once D is determined, we
compute K from equation 2.7 by including the correlation function hI(y)I(z)i
for natural images (Field, 1987; Ruderman & Bialek, 1994; Dong & Atick,
1995). Then we discuss whether D and K behave like a d function.

3 Calculation of D(x, y)

Equation 2.8, which de�nes D, is a sum over simple cell �lters. To compute it,
we reparameterize the �lters 2.2 in terms of quantities whose distributions
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have been measured. We then approximate the sum over cells by integrals
over those parameters using mathematical �ts to reported distributions.

To simplify the calculation, we group the simple cell �lters into pairs
with spatial phases 90 degrees apart (quadrature pairs), corresponding to
sine and cosine terms. Each pair of �lters can then be described by a single
complex exponential �lter gj,

gj(x) =
1

2p s2
j

exp(¡
|x ¡ aj|2

2s2
j

!
exp

¡
i
¡
kj ¢ x ¡ wj

¢¢
, (3.1)

where i ´
p

¡1. Neurophysiological experiments have found pairs of adja-
cent simple cells roughly 90 degrees out of phase with each other (Pollen &
Ronner, 1981), and we assume that combinations as in equation 3.1 can be
formed for all cells. Using complex exponential �lters, the sum that de�nes
D becomes

D(x, y) =
NX

j=1

gj(x)g¤
j (y)

=
NX

j=1

1

4p 2s4
j

exp(¡
|x ¡ aj|2 C |y ¡ aj|2

2s2
j

!
exp

¡
ikj ¢ (x ¡ y)

¢
, (3.2)

where g¤
j denotes the complex conjugate of gj. Note that the spatial phase

cancels out in the expression for D.
Simple cell receptive �eld �lters are characterized by location, envelope

width, and preferred spatial wavelength, phase, and orientation. The enve-
lope width and preferred spatial frequency are correlated; larger receptive
�elds tend to have lower preferred spatial frequencies. To eliminate this
dependence, we will characterize the receptive �elds by bandwidth rather
than by envelope width. The bandwidth is the width of the spatial frequency
tuning curve measured in octaves. It is de�ned as b ´ log2(v2/ v1), where v2
and v1 are the higher and lower spatial frequencies, respectively, at which
the neuron gives half of its maximum response. The bandwidth is related
to the envelope width s and the preferred frequency k by

s =

p
2 ln(2)

k
2b C 1
2b ¡ 1

. (3.3)

We use b and k as independent parameters, with the tuning curve width s
given by equation 3.3.

To compute D, we use an integral over receptive �eld parameters as an
approximation to the sum over neurons, making the replacement

NX

j=1

!
Z

dadkdbdh dw ra(a)r k(k)rb (b)rh (h )r w (w ), (3.4)
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where the different r functions are the neuronal coverage densities (the
number of neurons per unit parameter range) for the different receptive �eld
parameters. The validity of this approximation is addressed at the end of this
section. Preferred orientations and spatial phases appear to be uniformly
distributed over neurons in primary visual cortex (Hubel & Wiesel, 1974;
Field & Tolhurst, 1986; Bartfeld & Grinvald, 1992; Bonhoeffer & Grinvald,
1993) so we assume that rh (h ) and rw (w ) are constants. Over a small region
of the cortex, ra(a) can also be approximated as a constant. This means
that we are considering a small enough region of the visual �eld so that
the dependence of the cortical magni�cation factor on eccentricity can be
ignored. Since the D function we compute will be quite narrow, this is a
reasonable approximation. With these assumptions, we �nd

D(x, y) =
Z

dadkdbdhdw rk(k)rb (b)

c
s4 exp

¡
¡

|x ¡ a|2 C |y ¡ a|2

2s2

¢
exp

¡
ik|x ¡ y|) cos(h )

¢
. (3.5)

In this and all the following expressions, c denotes a constant that absorbs
all of the factors that affect the amplitude but not the functional form of D.
To simplify the above expression, we have made a shift in the de�nition of
the angle h , which is allowed because the h integral is over all values.

The integrals over a and w in equation 3.5 can be done immediately to
obtain

D(|x ¡ y| ) =
Z

dk dbdh rk(k)rb (b)

c
s2 exp

¡
¡

|x ¡ y|2

4s2

¢
exp

¡
ik|x ¡ y| cos(h )

¢
. (3.6)

Note that D depends on only the magnitude of x ¡ y.
To proceed further, we need to determine the density functions r k(k)

and rb (b). We have done this by �tting three different data sets. We �rst
performed �ts on the data reported by Movshon, Thompson, and Tolhurst
(1978) for neurons with 5 degree eccentricity or less in cat area 17. The data
and �ts are shown in Figure 2 (top). The mathematical �ts are given by

rb (b) =
16.6p
2p 0.44

exp(¡
(b ¡ 1.39)2

2(0.44)2

!
(3.7)

and

rk(k) =
1.7 k2

1 C
¡
k/ 5.2

¢5 , (3.8)



322 Emilio Salinas and L. F. Abbott

Figure 2: Distributions of optimal spatial frequencies (left) and bandwidths
(right) for simple cells. The black circles correspond to experimental data, and
the solid curves are mathematical �ts. (Top) Cat area 17 simple cells with eccen-
tricities smaller than 5 degrees. Data from Movshon et al. (1978). (Middle) Mon-
key V1 simple cells within 1.5 degrees of the fovea. Data from De Valois et al.
(1982). (Bottom) Monkey V1 simple cells with eccentricities from 3 to 5 degrees
(parafoveal sample). Data from De Valois et al. (1982). Notice the different scales
in the frequency axes of cat and monkey data. Parameters in the �tting equations
were found by minimizing the Â2 statistic (Press et al., 1992). All �ts had P > 0.3,
except for the preferred frequency distribution in the monkey parafoveal sample
(lower left), which had P > 0.01.

and we assume thatr k(k) = 0 for k > 20 radians per degree. We also �t two
data sets of De Valois, Albrecht, and Thorell (1982) from area V1 in macaque
monkeys. These correspond to a region from 0 to 1.5 degrees eccentricity
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(foveal) and another from 3 to 5 degrees eccentricity (parafoveal). The �ts
for the region closest to the fovea are shown in Figure 2 (middle), and are
given by

rb (b) =
31.7p
2p 0.62

exp(¡
(b ¡ 1.49)2

2(0.62)2

!
(3.9)

and

rk(k) =
0.17 k2

1 C
¡
k/ 22.2

¢5 . (3.10)

We assume that r (k) = 0 for k > 90 radians per degree. The �ts for the
parafoveal region are shown in Figure 2 (bottom) and are given by

rb (b) =
16.2p
2p 0.49

exp(¡
(b ¡ 1.3)2

2(0.49)2

!
(3.11)

and

rk(k) =
0.22 k2

1 C
¡
k/ 14.6

¢5 . (3.12)

Here we assume that r (k) = 0 for k > 50 radians per degree.
The distributions we have extracted exhibit an interesting property: the

bandwidth distributions from all three data sets are very similar, and the
preferred spatial frequency distributions are scaled versions of each other
to a high degree of accuracy. Because the receptive �eld width s is inversely
proportional to the preferred spatial frequency k (see equation 3.3), the in-
tegrand in equation 3.6 depends on |x ¡ y| only through the combination
k|x ¡ y| . This means that scaling the distribution rk(k) by a factor s will
have the effect of scaling the argument of the resulting D function to give
D(s|x ¡ y|). As a result, we can compute the D function for any one of the
distribution pairs and determine D for the others simply by scaling the
spatial argument of the function. We have veri�ed through numerical inte-
gration that the three bandwidth distributions are equivalent and that this
approximation is practically exact (compare Figures 3A and 4A). We will
use the experimental results for cells nearest to the fovea in the monkey. The
D function we compute and show in the �gures corresponds to this case,
but the results for the parafoveal region of the monkey can be obtained
by broadening these curves by a factor of 1.52, and for the cat data with a
broadening factor of 4.27. Results for any eccentricity in either animal can
similarly be obtained by scaling the curves by appropriate factors.
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Figure 3: D function for monkey simple cells. All D curves shown are normal-
ized to a maximum height of one. (A) Result when the experimentally measured
neuronal distributions, equations 3.9 and 3.10, are used in the calculation of D.
The �lled circles correspond to numerical integration of equation 3.6 for differ-
ent values of |x ¡ y|; the continuous line is a �t to the numerical results using
a combination of three gaussian functions (see equation 3.13). The width of the
curve at half maximum height, which determines the resolution for function
approximation, is 0.06 degree. (B) Results obtained when the distributions of
bandwidths and preferred frequencies are manipulated. The dotted line is the
D function when only neurons near the peaks of both distributions are used; the
width at half-height is 0.13 degree. The continuous line is the result when only
neurons with optimal frequencies lower than 50 radians per degree are included
in the calculation; the width at half-height is 0.086 degree. The dashed line is the
result when only neurons with optimal frequencies higher than 50 radians per
degree are included; the width at half-height is 0.042 degree. In these last two
cases the full bandwidth distribution was used.

Substituting equations 3.3, 3.9, and 3.10 into 3.6, the triple integral can
be computed numerically for different values of |x ¡ y| to yield the function
D. The result is shown in Figure 3A, where D has been normalized to a
maximum value of one. The continuous line is a �t to the numerical result,
indicated by dots. The �t was obtained by combining three gaussians,

D f it(|x ¡ y| ) = 0.8590 exp
¡

¡ |x ¡ y|2

2(0.024)2

¢
C 0.3590 exp

¡
¡ |x ¡ y|2

2(0.059)2

¢

¡ 0.2579 exp
¡

¡ |x ¡ y|2

2(0.085)2

¢
. (3.13)

The �gure shows that the full width at half-maximum height is 0.06 degrees.
It also shows that the sidebands around the central peak are very small; the
function does not oscillate. This suggests that D can approximate ad function
to a resolution of roughly 4 minutes of arc.
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Figure 4: D function for simple cells and retinal ganglion cells of the cat. Both
curves are normalized to a maximum height of one. (A) The D function for
simple cells of the cat primary visual cortex obtained by numerical integration
of equation 3.6. This curve is practically indistinguishable from the result in
Figure 3A scaled by a factor of 4.27. For comparison, the x-axes in this �gure
have been scaled precisely by this amount. The full width at half maximum
height is 0.26 degree. (B) The D function for a uniformly distributed population
of difference of gaussian �lters resembling those of retinal ganglion cells (see
the appendix). The full width at half maximum height is 0.5 degree.

In Figure 3B we examine how the D function depends on the distribu-
tions of preferred spatial frequencies and bandwidths used in the calcula-
tion. First, we investigate what happens if only neurons with parameters
near the peaks of the distributions in Figure 2 are considered. We include
bandwidths ranging between 1.4 and 1.6 octaves and optimal frequencies
ranging between 21 and 23 radians per degree, with no neurons outside
these ranges. The D function that results is shown in Figure 3B (dotted
line). It has large inhibitory sidebands, and its width at half-height is more
than twice the width of the original function. When the full bandwidth dis-
tribution is used but the same restricted range of preferred frequencies is
included, the result is similar.

The neurons at the tail of the preferred frequency distribution are impor-
tant in setting the width of D, even though proportionally they represent a
small fraction of the total. When the distribution is truncated, allowing only
optimal frequencies below 50 radians per degree, the resulting D function
has a width of 0.086 degrees. Conversely, when only optimal frequencies
above 50 radians per degree are included, the resulting D function has a
width of 0.042 degrees. Thus, the resolution of the full set of simple cells
seems to be limited by the highest frequencies included. The 1/ s2 factor
that appears in equation 2.2 is partly responsible for this effect.

It is interesting to compare the D function of simple cells with that of
neurons at earlier stages in the visual pathway. In the case of retinal gan-
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glion cells, the computation is straightforward because their �lters can be
described by differences of gaussians (see the appendix). The D functions
for simple cells and retinal ganglion cells corresponding to data collected
in cats are shown in Figure 4. The full widths at half-maximum height are
0.26 and 0.5 degree, respectively. The resolution of simple cells for function
approximation in the same animal is better, roughly by a factor of 2. This
is related to the fact that some simple cells have high preferred spatial fre-
quencies or, equivalently, �lters that vary more rapidly than those of retinal
ganglion cells.

Because the integral in equation 3.6 was computed numerically using the
trapezoidal rule (Press, Flannery, Teukolsky, & Vetterling, 1992), the D func-
tion was actually computed as a sum. This is appropriate since the biological
system involves individual neurons, not a continuum. The number of terms
in the sum is proportional to the number of neurons with receptive �elds
overlapping the same spatial location. Examining how the number of terms
affects the sum reveals how many neurons are needed to obtain a smooth D
function. The results shown in Figure 3A were obtained with 30 steps in ori-
entation h (in the range 0–2p ), 50 steps in preferred frequency k (in the range
0–90 radians per degree), and 50 steps in bandwidth b (in the range 0.1–3.0
radians per degree). With a much coarser grid of 8 orientations, 10 frequen-
cies, and a single bandwidth (same ranges), the resulting curve was almost
identical to the one in Figure 3A. In general, the distribution of bandwidths
had little impact on the results. Hence, for a given point in visual space,
sampling at 8 orientations and 10 frequencies per orientation is enough to
construct a D function with a 0.06 degree resolution. Are the neurophys-
iological data consistent with these requirements? Within the dimensions
of a hypercolumn, preferred orientation changes smoothly and uniformly
throughout 180 degrees (Hubel & Wiesel, 1974; Bartfeld & Grinvald, 1992;
Bonhoeffer & Grinvald, 1993). In fact, in orientation maps obtained with
optical recordings, 8 orientation bins in the 0–180 degrees range can easily
be distinguished by eye (Bartfeld & Grinvald, 1992; Bonhoeffer & Grin-
vald, 1993). Thus, sampling in orientation space is not a limitation. On the
other hand, the 10 frequency steps do not correspond to 10 neurons, for two
reasons. First, each complex �lter represents a sine-cosine pair where each
element is the difference between C fj and ¡ fi, which means 4 neurons per
�lter. Second,rk(k) is not uniform. To get at least 4 complex �lters with opti-
mal frequencies inside the 90 radians per degree bin, the 10 frequency bins
must involve a total of about 300 �lters, or 1200 neurons. This means that
for each point in space, at least 1200 frequencies are needed in each of the
orientation bins to achieve the resolution implied by the D function. De Val-
ois et al. (1982) estimated that in monkeys, on the order of 100,000 neurons
respond to stimuli at a given location in visual space. Assuming that half of
those are simple cells and that frequencies are uniformly distributed in the
8 orientation bins (De Valois et al., 1982; Field & Tolhurst, 1986; Hübener,
Shoham, Grinvald, & Bonhoeffer, 1997) leaves about 6000 frequencies per
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orientation bin. This number, although only a rough �gure, suggests that the
sampling density in spatial frequency is suf�cient to achieve the resolution
implied by the D functions that we have computed.

4 Calculation of K(x, y)

To compute the function K from D, we need to include the two-point corre-
lation function of ensembles of natural images, Q ´

«
I(x)I(y)

¬
. This function

has been characterized in the frequency domain (Field, 1987; Ruderman &
Bialek, 1994; Dong & Atick, 1995), so we will use its Fourier transform QQ
to compute the convolution 2.7 through which the K function is de�ned
(Bracewell, 1965).

Using a minimal set of assumptions, Dong & Atick (1995) derived an
analytic expression for the full spatiotemporal power spectrum of natural
images and �t it to data from movies and video recordings. Taking k as the
spatial frequency, in radians per degree, and v as the temporal frequency,
in radians per second, they proposed that

QQ(k, v) =
A

km¡1w2

Z r2v/ ck

r1v/ ck
dv vP(v), (4.1)

where A is a constant that absorbs the amplitude factors, c = 360/ 2p , m has
been measured from snapshot images to be about 2.3, r1 and r2 are, respec-
tively, the minimum and maximum viewing distances at which objects are
resolved, and P(v) is the probability distribution of velocities of objects that
are seen. Dong & Atick (1995) suggested that

P(v) « 1
(v C v0)n , (4.2)

which �t their two data sets extremely well using n = 3.7, v0 = 1.02 meters
per second, r1 equal to 2 or 4 meters, and r2 either 23 or 40 meters (depending
on the data set). The parameter v0 is related to the mean speed by v =
v0/ (n ¡ 2). We will use the above expression in our calculation of K, but to
investigate whether the particular choice for P(v) is critical to our results,
we also consider another distribution with a different shape:

P(v) « v exp(¡av). (4.3)

Because we are interested only in the spatial component of QQ(k, v), we
need to average over v, or consider it as an additional parameter. Given
typical ocular movements, a reasonable choice is to set v equal to the mean
saccade frequency—about 4 per second or v = 8p radians per second. We
will use this value and consider QQ as a function of k only.
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Figure 5: K functions for monkey and cat simple cells. The curves shown corre-
spond to numerical integration of equation 4.5 for different values of |x ¡ y| . (A)
Results for monkey simple cells based on the Df it function of equation 3.13 and
shown in Figure 3A. The thick line is the result when the following parameters
were used in equations 4.1 and 4.2: n = 3.7, m = 2.3, r1 = 0.2 m, r2 = 100 m,
v0 = 1.02 m/s, v = 8p rad/s. The full width at half height is 0.112 degree. The
thin lines were obtained with the same parameters, except v = 32p (narrower
curve; width at half-height is 0.105 degree) and v = 2p (wider curve; width at
half-height is 0.135±). (B) Results for cat simple cells also based on Df it in equa-
tion 3.13, but scaled by a factor of 4.27. The x-axis in this �gure was scaled by
the same amount. The width at half-height is 0.45 degree.

We �rst compute the Fourier transform of K. This is equal to the product
of the Fourier transforms of D and Q, since K is de�ned by a convolution
(Bracewell, 1965; Press et al., 1992). We actually use the Fourier transform of
Df it, which is simply the sum of the Fourier transforms of three gaussians.
The Fourier transform of K is QK = QDf it QQ. Transforming back to the spatial
representation we have

K(x, y) =
1

4p 2

Z
dk exp

¡
ik ¢ (x ¡ y)

¢ QDf it(k) QQ(k). (4.4)

Writing k in polar coordinates and shifting the angle variable, we obtain

K(|x ¡ y| ) =
1

4p 2

Z
dkdh k exp

¡
ik|x ¡ y| cos(h )

¢ QDf it(k) QQ(k). (4.5)

Given values for the parameters of QQ, the above integral can be computed
numerically for each value of |x ¡ y| . Figure 5 shows the results for the data
collected in monkeys (see Figure 5A) and cats (see Figure 5B) integrating
equation 4.1 using equation 4.2. For the monkey data, equation 3.13 was
used for Df it, and for the cat data this same curve was scaled by a factor of



Simple Cells and Tight Frames 329

4.27. Comparison between Figures 5A and 5B shows that the K functions are
approximately scaled versions of each other; the K function for cats is just
slightly narrower than predicted by scaling. The thick curve in Figure 5A
is the result for a standard set of parameters, whose values are listed in
the caption of Figure 5. The full width at half-height of the curve is 0.112
degree, which is about twice the width of the original D function. Thus,
averaging over images worsens the resolution. The thin curves in the same
�gure were obtained by multiplying the standard value of v by 1/4 (wider
curve) and by 4 (narrower curve). This has the same effect as multiplying
r1 and r2 or v0 by these same factors, because these parameters multiply
or divide v. The thin curves are quite close to the thick one, which means
that the parameters in equations 4.1 and 4.2 have relatively little importance
in de�ning the shape and width of K. The precise functional form of P(v)
did not seem to be crucial either. When equation 4.3 was used (parameter
a was set so that the mean speed was the same as before), the results were
indistinguishable from those in Figure 5. It is the tail of QQ, which goes as
1/ f m¡1, that makes K broader than D and de�nes its shape; the detailed form
of QQ near k = 0, which is where the parameters have an in�uence, does not
seem to matter much.

5 Assessment of Tightness

We have compared the computed D and K kernels to a d function based
only on the width of their central peaks, but the tightness of a set of basis
functions can be more easily grasped by plotting the Fourier transform
of its associated D function. In this way, frequency ranges in which QD is
approximately �at can be promptly identi�ed. This is important, because
the class of functions that are band-limited to such frequency ranges will be
accurately represented by the fj basis, that is, the fj functions will behave as a
tight framefor the class of functions whose Fourier transform is zero outside
the identi�ed ranges. Flatness is quanti�ed by the ratio max( QD)/ min( QD),
which is commonly used as a rigorous measure of tightness (Lee, 1996).

Figure 6 shows the Fourier transforms of several D and K functions.
Because K is related to D through a convolution with the correlation of nat-
ural images (see equation 2.7), in all cases QK is the product of QD times the
Fourier transform of the natural image correlation, QQ. Here QD reveals the
tightness of the original set of functions, when no averaging over images
takes place; in contrast, QK reveals the tightness of the set when averaging
over multiple images does take place (see section 6). Figures 6E and 6F show
an ideal case in which the basis set provides perfect approximation of func-
tions with frequency components below 30 cycles per degree; the associated
QD function is �at in this range. This corresponds, for example, to a set of

wavelets (Daubechies, 1990, 1992). For this set QK is equal to QQ, so Figure 6F
simply shows the Fourier transform of the natural image correlation func-
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Figure 6: Fourier transforms of different D (left) and K (right) functions. In all
cases the plots on the right were obtained by multiplying the plots on the left
by the Fourier transform of the natural image correlation function, QQ (shown
in F). The top row shows the results for monkey V1 foveal neurons. (A) Fourier
transform of the D function shown in Figure 3A. (B) Fourier transform of the
K function shown in Figure 5A. The middle row shows the results for retinal
ganglion cells of the cat (see the appendix). (C) Fourier transform of the D
function shown in Figure 4B. (D) Fourier transform of the K function associated
with retinal ganglion cells of the cat. The bottom row shows an ideal case of a
set of basis functions whose associated D function is exactly ad function. Thus,
the QK function is equal to QQ. The QQ and QD curves were scaled to a maximum of
one. Note that in these plots the units of spatial frequency are cycles per degree.

tion. This function is not at all �at; although it looks fairly narrow in x space
(not shown, but very similar to Figure 5A), its slowly decaying tail makes it
a poor approximation to ad function. Figures 6A and 6B show the results for
monkey V1 simple cells (foveal). The QK function is very similar to QQ, suggest-
ing that the ensemble of V1 neurons is not compensating for the average over
natural images. On the other hand, QD is �at up to about 1 cycle per degree, in-
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dicating that simple cell receptive �elds provide an excellent approximation
of a tight frame for functions with frequency cutoffs no higher than 1 cycle
per degree. Even up to 10 cycles per degree, where simplecell responses start
to attentuate signi�cantly, QD varies only by a factor between 4 and 5, not too
far from the factor of 2 or less that corresponds to a standard de�nition of a
tight frame (Lee, 1996). As a comparison, Figures 6C and 6D show the results
for retinal ganglion neurons from the cat (see the appendix). In this case QK is
much �atter than QD, albeit with a cutoff between 1 and 2 cycles per degree.

6 Discussion

We have evaluated the capacity of populations of simple cells in primary
visual cortex to provide a basis for constructing more complicated recep-
tive �elds through Hebbian synaptic weights. There are some similarities
between the conditions we have studied, in particular, the suggestion that
K is proportional to a d function, and the work of Atick and Redlich (1990,
1992) concerning ideas proposed by Barlow (1989) regarding redundancy
in neuronal representations. However, there are substantial differences be-
tween our approach and theirs. Atick and Redlich (1990, 1992) imposed
translational invariance so that all of the neurons they considered had the
same receptive �eld structure. Their formulations resulted in consideration
of functions such as K, including averages over natural images. Because all
the receptive �elds were taken to be the same, this approach generated an
optimality condition on a single receptive �eld. Atick and Redlich (1990,
1992) computed several optimal receptive �eld �lters, among them those
that solved the equation for K close to a d function. The case of function
approximation that we consider involves cells with different receptive �eld
structures and depends critically on the distribution of their parameters
across the cortical population. Our D and K functions characterize the ca-
pacity of the ensemble of all simple cells for function approximation; they
are not a property of single cells, as in the work of Atick and Redlich. It is
interesting that both cases involve averages over natural images and some
similar mathematical expressions, but the quantities being considered are
very different: the capacity to transmit information in one case and the ac-
curacy for function approximation in the other.

From the QD and QK curves computed (see Figure 6), we conclude that the
set of monkey V1 simple cells approximates a tight frame with a resolution,
given by the cutoff in QD, on the order of 1/10 of a degree. The resolution
for cats, obtained by appropriate scaling of D, is about 0.43 degrees. In both
cases the D function is more similar to the ideal d function than the K func-
tion, which includes corrections for natural image statistics. Thus, we �nd
no indication that this basis set is counteracting the effects of averaging
over many images. In contrast, sets of �lters like those of retinal ganglion
neurons seem to be better suited for function approximation when the ef-
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fect of image correlations is included. However, their resolution is rather
poor—on the order of 1 degree. We should stress that these resolutions are
meaningful only for synaptic modi�cation processes based on correlational
mechanisms. In particular, our results do not imply that simple cells have a
higher overall resolution than retinal ganglion cells, an impossibility given
that retinal ganglion cells provide the input to simple cells. Our results imply
only that simple cells serve as a better basis from which neurons selective
for arbitrary images can be constructed on the basis of linear superposition
and Hebbian synaptic modi�cation.

To understand the difference between using the D and K functions to
determine whether simple cell receptive �elds form a tight frame, we might
imagine two formsof Hebbian learning. For the type of Hebbian learning we
discussed in section 1, synaptic adaptation occurs slowly while an ensemble
of images is displayed. In this case, the function K sets the resolution for func-
tion approximation with Hebbian synapses. Suppose instead that Hebbian
modi�cation of synapses occurs rapidly and only when an image equal to
the target function appears. In this case the process is fast enough that images
different from the target function do not affect the synaptic weights. For this
learning procedure, the resolution for function approximation is set by D.

Visual acuity in humans and monkeys, in image discrimination or recog-
nition tasks that involve the activities of large numbers of neurons, is about 1
minute of arc, or 0.017 degree (Westheimer, 1980). This is about six times bet-
ter than the resolution we have estimated for approximation of an arbitrary
function based on D. It might seem odd that our estimation is considerably
below psychophysical discrimination thresholds, but our analysis applies
speci�cally to single neurons downstream from V1 that combine their in-
puts in a perfectly linear fashion. The discrepancy indicates that the visual
system does not rely exclusively on the tightness of the V1 neuronal en-
semble to achieve the acuity exhibited at the behavioral level; additional
mechanisms beyond linear summation are required. There are two promi-
nent possibilities for this. First, the neural circuitry may be able to exploit
some of its nonlinearities to increase accuracy. On the other hand, higher
accuracy may also be achieved through a population of neurons. Consider-
ing the ubiquity of population codes throughout the cortex, the capacity of
V1 simple cells to act as a basis for Hebbian-based function approximation
by single postsynaptic neurons may appear substantial—only a factor of
6 below behavioral performance. However, to try to answer the question
posed in the title, the frame formed by simple cells in primary visual cor-
tex is tighter than would be expected from a random distribution of Gabor
�lters, but not tight enough to account for behavioral acuity.

Appendix

Here we compute the D function for retinal ganglion cells (X cells). The �ring
of these cells is well characterized through a linear �ltering operation (af-
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terward rectifying the result to eliminate negative rates), as in equation 2.1.
In this case each �lter is equal to the difference of two gaussians,

fj(x) =
A1

2p s2
1

exp(¡
¡
x ¡ aj

¢2

2s2
1

!
¡

A2

2p s2
2

exp(¡
¡
x ¡ aj

¢2

2s2
2

!
. (A.1)

We assume that the only parameter that varies across neurons is a, the
receptive �eld location. Values for the rest of the parameters are as follows:
A1/ A2 = 17/ 16 (Linsenmeier, Frishman, Jakiela, & Enroth-Cugell, 1982),
s1 = 0.17666± and s2 = 0.53± (Peichl & Wäsle, 1979). The D function is
computed as in equation 2.8, using the above �lters. The sum over neurons
is approximated by an integral over a assuming that the receptive �elds
are uniformly distributed, so r (a) is a constant. The integrals can then be
computed analytically, and the result is

D(|x ¡ y| ) =
A2

1

4p s2
1

exp(¡
¡
x ¡ y

¢2

4s2
1

!
C

A2
2

4p s2
2

exp(¡
¡
x ¡ y

¢2

4s2
2

!

¡
A1A2

4p (s2
1 C s2

2 )
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¡
x ¡ y
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1 C s2

2 )

!
. (A.2)

The Fourier transform of this expression is

QD(k) = (A1 exp(¡
s2

1 k2

2

!
¡ A2 exp(¡

s2
2 k2

2

!!2

, (A.3)

where k is in radians per degree.
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