
Evolution of Tail-Call Optimization in a Population of Self-Hosting Compilers

Lance R. Williams1

1Department of Computer Science, University of New Mexico, Albuquerque, NM 87131
williams@cs.unm.edu

Abstract

We demonstrate the evolution of a more complex and more
efficient self-replicating computer program from a less com-
plex and less efficient ancestor. Both programs, which em-
ploy a novel method of self-replication based on compiling
their own source code, are significantly more complex than
programs which reproduce by copying themselves, and which
have only exhibited evolution of degenerate methods of self-
replication.

Introduction
Among living organisms, which employ many and varied
mechanisms in the process of reproduction, examples of
evolved mechanisms which are both more complex and
more efficient than ancestral mechanisms, abound. Yet,
nearly twenty years after (Ray, 1994)’s groundbreaking
work on the Tierra system, in which the evolution of many
novel (but degenerate) methods of self-replication was first
demonstrated, there is still no example of a more complex
and more efficient self-replicating computer program evolv-
ing from a less complex and less efficient ancestor.

This is not to say that there has been no progress in the
field of artificial life since Tierra. Nor are we suggest-
ing that increased reproductive efficiency is the only evo-
lutionary path to increased complexity. The evolution of
self-replicating programs of increased complexity has been
demonstrated many times(Koza, 1994; Taylor and Hallam,
1997; Spector and Robinson, 2002), and perhaps most con-
vincingly in the Avida system(Adami et al., 1994). How-
ever, more complex programs evolved in Avida only be-
cause complexity was artificially equated with efficiency in
the sense that programs which learned to solve problems
unrelated to self-replication were rewarded with larger ra-
tions of CPU time. No program in Avida (or in any other
system known to us) has ever evolved a method of self-
replication that is both more complex and more efficient than
the method employed by its ancestor.

A New Kind of Artificial Organism

Self-replicating programs have been written in both high-
level languages and machine languages. We define a ma-

chine language program to be interesting if it prints a string
at least as long as itself and halts when executed, and observe
that the Kolmogorov complexity of interesting programs is
lower than that of random strings of similar length. Now,
if we were to train an adaptive compression algorithm on a
large set of interesting programs, then the compressed pro-
grams which result would look like random strings. How-
ever, by virtue of being shorter, they would be more nu-
merous relative to truly random strings of similar length. It
follows that compression, which decreases redundancy by
replacing recurring sequences of instructions with invented
names, increases the density of interesting programs.

Since both processes increase redundancy and output ma-
chine language programs, it is natural to identify decompres-
sion with compilation, which increases redundancy by re-
peatedly generating similar sequences of instructions while
traversing a parse tree. Viewed this way, programs written in
(more expressive) high-level languages are compressed ma-
chine language programs, and compiling is the process of
decompressing source code strings into object code strings
which can be executed by a CPU.

If the density of interesting programs increases with the
expressiveness of the language in which they are encoded (as
the above strongly suggests), then one should use the most
expressive language possible for any process, like genetic
programming, which involves searching the space of inter-
esting programs. However, if the goal is building artificial
organisms, then high-level languages have a very serious
drawback when compared to machine language. Namely,
programs in high-level languages must be compiled into ma-
chine language before they can be executed by a CPU or be
reified as a distributed virtual machine(Williams, 2012).

Given that we want our self-replicating programs to be
both (potentially) reifiable and to evolve into programs of
greater complexity and efficiency, we must ask: How can
the advantages which derive from the use of a high-level lan-
guage for genetic programming be reconciled with the fact
that only machine language programs can be reified?

To address this question, we introduce a new and sig-
nificantly more complex kind of artificial organism–a ma-



  

copy compile copy compile

copy compile

copy compile

mother

daughter

copy

copy

mother

daughter

Figure 1: Conventional self-replicating program (left)
copies itself by exploiting program-data equivalence of von
Neumann architecture. Compiling quine self-replicating
program (right) with source code genotype (green) and ob-
ject code phenotype (red). Because the shortest correct im-
plementation of copy is optimal, only the compiling quine is
capable of non-degenerate evolution.

chine language program which reproduces by compiling
its own source-code. See Figure 1. Conventional self-
replicating programs reproduce by copying themselves. Op-
timum copiers accomplish this in time proportional to their
length, and it is not very hard to write a copier which is op-
timum in this sense (or for one to evolve). It follows that
shorter implementations are always more efficient, which
leads to degenerate evolution, absent factors beyond effi-
ciency. The possible variation in the implementation of a
compiler is far larger. Even if the definition of the object
language is stipulated, there is still a huge space of alterna-
tive implementations, including the syntax and semantics of
the source language, the ordering of the decision tree per-
forming syntactic analysis, and the presence (or absence)
and effectiveness of any object code optimizing procedures.

In this paper we describe a machine language program
which reproduces by compiling its own source code and
use genetic programming to demonstrate its capacity for
non-degenerate evolution. In the process we address ques-
tions such as: How can a program like a compiler, which
implements a complex prescribed transformation, evolve
improvements while avoiding non-functional intermediate
forms? How can two lexically scoped programs be com-
bined by crossover without breaking the product? How can
a more efficient self-replicating program evolve from a less
efficient ancestor when all mutations initially yield higher
self-replication cost?

A Simple Programming Language

Because a self-hosting compiler compiles the same language
it is written in, it can compile itself. The language we used
to construct our self-hosting compiler is a pure functional
subset of Scheme which we call Skeme. Because it is purely
functional, define, which associates values with names in a
global environment using mutation, and letrec, which also
uses mutation, have been excluded. The global environ-
ment itself is eliminated by making primitive functions con-
stants. For simplicity, closures are restricted to one argu-

  

pc args env

pc args env

pc args env

.

.

.

val

val

val

.

.

.

arguments

environment

frames

 accumulator

pc

argument stack

frame stack

registers

environment stack

*

+

1 2

3

compilation

val

val

val

.

.

.

frame

halt

frame

constant

3
argument

constant

argument

constant

apply +

argument

constant

*apply

2

1
argument

constant

Figure 2: Virtual machine for evaluating compiled Scheme
expressions showing its registers and associated heap-
allocated data structures(Dybvig, 1987).

ment; user defined functions with more than one argument
must be written in a curried style. This simplifies the rep-
resentation of the lexical environment which is used at run-
time by making all variable references integer offsets into a
flat environment stack; these are termed de Bruijn indices
and can be used instead of symbols to represent bound vari-
ables(De Bruijn, 1972).

One feature peculiar to Skeme is the special-form,
lambda+. When a closure is created by lambda+, the clo-
sure’s address is added to the front of the enclosed envi-
ronment; the de Bruijn index for this address can then be
used for recursive function calls. For example, the follow-
ing function computes factorial:

(lambda+ (if (= %0 0) 1 (* %0 (%1 (- %0 1)))))

where %0 is a reference to the closure’s argument and %1 is
a reference to the closure’s address.

Tail-Call Optimization

Because the very first self-hosting compiler was written in
Lisp, it is not surprising that it is possible (by including
primitive functions which construct bytecode types) to write
a very small self-hosting compiler in Skeme. See Figures 2
and 3.

The cost of compiling a given source code depends not
only on its size, but also on the complexity of the source
language, the efficiency of the compiler, and the cost of
any object code optimizations it performs. Common com-
piler optimizations include constant folding, loop unrolling,
function inlining, loop-invariant code motion, elimination of
common subexpressions, and dead code elimination. Since
a self-hosting compiler compiles itself, the efficiency of the
object code it generates also affects compilation cost; it fol-
lows that minimizing the cost of self-compilation involves
a complex set of tradeoffs. The most important of these is
that object code optimizations must pay for themselves by
yielding an increase in object code efficiency large enough



to offset the additional cost of compiling the source code
implementing the optimization.

Most of the overhead associated with a function call in-
volves the saving and restoration of evaluation contexts. In
Skeme, these operations are performed by the frame and re-
turn bytecodes which push and pop the frame stack. How-
ever, when one function calls another function in a tail po-
sition, there is no need to save an evaluation context, be-
cause the restored context will just be discarded when the
first function returns. A compiler which performs tail-call
optimization recognizes when a function is called in a tail
position and does not generate the code which saves and re-
stores evaluation contexts. This not only saves time, it also
saves space, since tail recursive function calls will not in-
crease the size of the frame stack at runtime.

A Quine which Compiles Itself

A quine is a program which prints itself. It is possible to
write a quine in any programming language but Skeme’s list-
based syntax makes it possible to write especially short and
simple quines. For example, in the following Skeme quine,
an expression (lambda (list %0 (list quote %0))) which eval-
uates to a closure which appends a value to the same value
quoted is applied to the same expression quoted:
((lambda (list %0 (list quote %0)))
(quote (lambda (list %0 (list quote %0)))))

It is possible to define an expression ϕ in Skeme which
can compile any Skeme expression. The expression ϕ evalu-
ates to a curried function which takes a compiled expression
and an uncompiled expression as arguments. The compiled
expression is a continuation; the uncompiled expression is
the source code to be compiled; applying the curried func-
tion to the halt bytecode yields a function which can compile
top-level expressions. Inserting a copy of (ϕ (make-halt))
into the unquoted half of the quine so that it compiles its
result (and mirroring this change in the quoted half) yields
((lambda ((ϕ (make-halt))

(list %0 (list quote %0))))
(quote (lambda ((ϕ (make-halt))

(list %0 (list quote %0))))))

which, although not a quine itself, returns a quine when eval-
uated. Significantly, this quine is not a source code fixed-
point of the Skeme interpreter but an object code fixed-point
of Dybvig’s virtual machine. In effect, it is a quine in a
low-level language (phenotype) which reproduces by com-
piling a compressed self-description written in a high-level
language (genotype).

In prior work on evolution of self-replicating programs
there has been no distinction between phenotype and geno-
type; mutations are made on the same representation which
is evaluated for fitness. In contrast, in living organisms,
small changes in genotype due to mutation can be amplified
by a development process and result in large changes in phe-
notype; it is phenotype which is then evaluated for fitness. In

  

if
(null? %0)

(make-frame
  %4
  ((%5 (make-apply))
   %1))

((lambda … )
 ((%5 (make-argument ((%5 (make-apply)) %1)))
  (car %0)))

 (make-frame
  %5
  ((%6 (make-argument %0))
   (car (cdr %1))))

(null? (cdr %1))

 (make-frame %5 %0)

if

(eq? %1 quote)

X

if

(make-constant ((lambda+ … ) (car %0)) %4)

(pair? %0)

 (cons (%1 (car %0)) (%1 (cdr %0)))

if
(copy-atom %0)

(eq? %1 if)

(pair? %0)

(lambda+ (lambda+ … ))

((lambda ((lambda … ) (cdr %1))) (car %0))

((%5 (make-test
           (%3 (car (cdr %0)))
           (%3 (car (cdr (cdr %0))))))
 (car %0))

if

(eq? %1 lambda+) (make-klose
  ((%5 (make-return))
   (car %0))
  %4)

X

if

(make-close
  ((%5 (make-return))
   (car %0))
  %4)

if

if

(make-refer %0 %2)

(make-constant %0 %2)(index? %0)if

(eq? %1 lambda)

Z

Y

Figure 3: An expression ϕ for compiling Skeme into object
code able to compile itself. The X indicates a break in the
figure; the subtree labeled Y copies the Skeme source code
and the subtree labeled Z compiles function applications.

a compiling quine, small changes in source code (genotype)
are amplified by compilation (development) yielding much
larger changes in object code (phenotype) and it is object
code which determines fitness, since its execution consumes
the physical resources of space and time.

Related Work
(Stephenson et al., 2003) described a genetic programming
system which learns priority functions for compiler opti-
mizations including hyperblock selection, register alloca-
tion, and data prefetching. (D’haeseleer, 1994) described
and experimentally evaluated a method for context preserv-
ing crossover. (Kirshenbaum, 2000) demonstrated a genetic
programming system where crossover is defined so that it
respects the meaning of statically defined local variables.

Several authors have explored the idea of staged or alter-
nating fitness functions. (Koza et al., 1999) used a staged fit-
ness function as a method for multi-objective optimization.
(Pujol, 1999) described a system where the fitness function
is switched after a correct solution is discovered to a func-
tion which minimizes solution size. (Zou and Lung, 2004)
and (Offman et al., 2008) used alternating fitness functions
to preserve diversity in genetic algorithm derived solutions
to problems in water quality model calibration and protein
model selection.

Genetic Programming
Our approach to genetic programming is motivated by the
fact that gene duplication followed by specialization of one
or both copies is a common route to increased complexity
in biological evolution(Finnigan et al., 2012). We introduce



  

(null? (cdr %1))

((lambda … )
 ((%4 (make-argument ((%5 (make-apply)) %1)))
  (car %0)))

if

if

(eq? %5 (make-return))  (make-frame %5 %0)

if

(eq? (make-return) %5)  (make-frame
  %5
  ((%6 (make-argument %0))
   (car (cdr %1))))

((%6 (make-argument %0))
 (car (cdr %1)))

%0

B

C

Z

Figure 4: Evolved subtrees implementing the tail-call opti-
mizations which characterize the B and C genotypes. The A
genotype performs neither optimization while the D geno-
type performs both. Both optimizations check to see if the
continuation is a return bytecode, which performs a frame
stack pop. If so, the push-pop sequence is not generated,
resulting in significant savings in time and space usage.

two mutation operators called bloat and shrink which play
roles analogous to gene duplication and specialization and
employ these in a genetic programming system where fitness
alternates between object code based definitions of complex-
ity and self-replication efficiency. In teleological terms, the
bloat operator attempts to increase complexity by adding
source code while the shrink operator attempts to increase
self-replication efficiency by removing it.

Alternating Fitness Function

Time is divided into ten generation periods termed epochs
which alternate between two types, flush and lean. In flush
epochs, fitness is defined as effective complexity while in
lean epochs it is defined as self-replication efficiency.

A test bytecode is defined to be non-trivial if both of its
continuations are exercised in the course of self-replication.
This will only happen if the predicate expression in the
if special-form from which the test bytecode is compiled
sometimes evaluates to true and sometimes to false. The
number of non-trivial test bytecodes in the object code is
a good measure of the source code’s effective complexity.
Consequently, in flush epochs the number of non-trivial test
bytecodes in the object code is maximized.

Because frame stack pushes and pops are the most ex-
pensive operation performed by the virtual machine, they
are an excellent proxy for overall self-replication cost. Con-
sequently, in lean epochs, the number of frame stack pops,
which are implemented by the return bytecode, is minimized.

Mutations can be classified as beneficial, neutral, harm-
ful, and lethal. The purpose of the bloat operator is to in-
troduce source code which can be shaped by the shrink op-
erator and by crossover. Significantly, the introduced code
does not change the value of any expression which contains

  

A

C

   p
C
 

(bloat)

    q
C
 

(shrink)

Bp
B
 (bloat) q

B
 (shrink)

D
p

B
 (bloat) q

B
 (shrink)

A B

C D

    q
C
 

(shrink)

   p
C
 

(bloat)

    q
C
 

(shrink)

   p
C
 

(bloat)

   p
C
 

(bloat)

    q
C
 

(shrink)

p
B
 (bloat) q

B
 (shrink)

p
B
 (bloat) q

B
 (shrink)

Figure 5: Contour plots of fitness landscapes during flush
(left) and lean (right) epochs. Colored arrows point in di-
rections of increased fitness. In lean epochs, the four geno-
types A, B, C, and D occupy islands separated by valleys
of decreased fitness; the bloat mutations necessary for A
to evolve into any of the other genotypes are harmful since
they increase the cost of self-replication. In contrast, the
shrink mutations required for A to evolve into any of the
other genotypes are beneficial. In flush epochs, the situation
is reversed–the bloat mutations are beneficial and the shrink
mutations are harmful since they increase and decrease ef-
fective complexity respectively. Alternating between the
two fitness functions creates paths between the A and D
genotypes consisting solely of beneficial mutations.

it; it is value-neutral with respect to evaluation. Because (by
their nature) they increase the cost of self-replication with-
out breaking the compiler, bloat mutations (although never
lethal) are harmful during lean epochs.

In contrast, shrink mutations are beneficial when they re-
verse bloat mutations during lean epochs and can be harm-
ful when they reverse bloat mutations during flush epochs.
However, shrink mutations have two different and more pro-
nounced effects. First, a shrink mutation can remove code
and break the compiler, in which case it is lethal. Second,
it can shape the result of a bloat mutation in a way which
decreases the cost of self-replication, in which case it will
be strongly beneficial during lean epochs and become fixed
in the population.

Bloat

The source code for the self-hosting compiler contains
boolean-valued expressions with six different syntactic
forms. Excluding primitive functions, the source code con-
tains six different expressions of constant value. A random
syntactic form can be combined with a random de Bruijin
index and (if necessary), a random constant-valued expres-
sion, to construct a random boolean-valued expression, φ .

The bloat operator is defined by five rules. The first four
rules define a recursive procedure which applies the bloat
operator in selected contexts. The last rule replaces a func-
tion application with an i f expression which returns the
same value regardless of whether a random boolean-valued
expression, φ , evaluates to true or false. Consequently, the



value of the expression is the same before and after the mu-
tation. The fact that the bloat operator is value-neutral with
respect to evaluation is important because only viable in-
dividuals (those which correctly self-replicate) are copied
to the next generation; and although a bloat mutation typ-
ically introduces expressions which are not evaluated dur-
ing self-replication (which greatly reduces the fitness of af-
fected individuals by increasing their self-replication costs)
affected individuals always remain viable because bloat mu-
tations cannot actually break the compiler which contains
them. The five rules which define the bloat operator are

1. (lambda[+] e1)→ (lambda[+] e′1)

2. ((lambda[+] e1) e2)→ ((lambda[+] e′1) e′2)

3. (if e1 (id e2) e3)→ (if e1 (id e2) e3)

4. (if e1 e2 e3)→ (if e1 e′2 e′3)

5. ( f e1 . . .eN )→ ( f e1 . . . eN ) ‖ (if φ (id ( f e1 . . .eN )) ( f e1 . . .eN ))

where f is a primitive function, φ is a random boolean-
valued expression, id is the identity function, and primes
mark expressions which are recursively expanded. Alterna-
tive right hand sides are separated by vertical bars; the alter-
native to the left of the || (no mutation) is chosen with 95%
probability; the remaining alternative (mutation) is chosen
otherwise. The identity function serves as a value neutral
tag in a meta-syntax; because the third rule has the same left
and right hand sides, the recursive procedure which applies
the bloat operator will not descend into i f subtrees marked
with this tag; this prevents the compounding of bloat muta-
tions.

Shrink

The rules defining the shrink operator serve two purposes.
the first purpose is to reverse mutations introduced by the
bloat operator; the fourth shrink rule removes the tagged i f
expressions generated by the bloat operator so that a bloat
mutation followed by a shrink mutation (of this type) has no
net effect. The second purpose is to simplify function ap-
plications; the last shrink rule replaces an expression where
a function is applied to one or more values with just one
of those values. Because these rules also remove the iden-
tity function tags inserted by the bloat operator, the expres-
sion which results from a shrink mutation is again subject to
bloating. The five rules which define the shrink operator are

1. (lambda[+] e1)→ (lambda[+] e′1)

2. ((lambda[+] e1) e2)→ ((lambda[+] e′1) e′2)

3. (if e1 e2 e3)→ (if e1 e′2 e′3)

4. (if e1 (id e2) e3)→ (if e1 (id e′2) e′3) ‖ e2 | e3

5. ( f e1 . . .eN)→ ( f e1 . . .eN) ‖ e1 | . . . | eN

Table 1: Complexities and self-replication costs.

A B C D
non-trivial tests 8 9 9 10

returns 551 333 432 183

where f is a primitive function, id is the identity func-
tion, and primes mark expressions which are recursively ex-
panded. Alternative right hand sides are separated by verti-
cal bars; the alternative to the left of the || (no mutation) is
chosen with 95% probability; one of the remaining alterna-
tives (mutation) is chosen otherwise (each with equal prob-
ability). Unlike the bloat operator, which is value neutral,
the shrink operator changes the object code generated by the
compiler when it modifies an expression which is evaluated
during self-replication. In the case of the fourth shrink rule,
this often reverses a harmful bloat mutation, in which case
the shrink mutation is beneficial. However, in the case of the
last shrink rule, the mutation most often breaks the compiler.
Very rarely, the shrink mutation does not break the compiler
but instead results in a decrease in self-replication cost.

The problem which plagues many genetic programming
systems, in which code trees grow larger with increasing
time, does not occur for two reasons. First, the use of the
id function as a tag prevents the bloat operator from being
applied within i f expressions which were themselves just
created. Second, the shrink operator reverses bloat muta-
tions, and bloat mutations not yielding a decrease in self-
replication cost are strongly selected against during lean
epochs.

The combined effect on fitness of these two mutation op-
erators is complex. After a pair of bloat and shrink muta-
tions, a more complex source code must be analyzed by a
more complex compiler, a change which might (but more
likely will not) pay for itself by an increase in the efficiency
of the generated object code.

Crossover

Because the self-hosting compiler is a complex lexically
scoped program, variables which are defined in one scope
will not necessarily be defined in other scopes. If we em-
ployed the standard method of non-homologous crossover
used in most work on genetic programming, then subtrees
could be inserted into scopes where one or more variables
are undefined, and this would break the compiler. We ad-
dress this problem by employing the homologous crossover
method described by (D’haeseleer, 1994). In this method,
the crossover operator descends into both parent trees in par-
allel; points where the two parent trees differ are subject to
crossover, with the child receiving the subtree of either par-
ent with equal probability. D’haeseleer notes that homolo-
gous crossover facilitates convergence (fixation) since chil-
dren resulting from the crossover of identical parents will
also be identical to the parents.



 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 0  10  20  30  40  50  60  70  80  90

m
ed

ia
n 

nu
m

be
r o

f n
on

-tr
iv

ia
l t

es
ts

generation

Figure 6: The median number (in a population of size 200)
of non-trivial test bytecodes averaged over 20 runs (error
bars show plus or minus one standard deviation). Because
each non-trivial test bytecode results from a bloat mutation
at a distinct point in the ϕ expression, this graph demon-
strates that mutation is in no way restricted to the two points
relevant to the evolution of tail-call optimization.

Genotypes

Function applications involving one and two arguments are
compiled at two different points in the ϕ expression and
each of these points is a potential target for a pair of bloat
and shrink mutations which would partially implement tail-
call optimization. We call the genotype of programs which
perform neither optimization A, one (or the other) optimiza-
tion B (or C), and both optimizations, D. Both optimizations
check to see if the continuation is a return bytecode, which
performs a frame stack pop. If so, the push-pop sequence
is not generated, resulting in significant time and space sav-
ings. See Figure 4. Lower bounds for the complexity and
self-replication cost of each of the four genotypes are shown
in Table 1. Finally, the relative fitnesses of the four geno-
types are shown graphically, in the context of the fitness
landscapes for the flush and lean epochs, in Figure 5.

Experimental Results

The initial population consisted of two hundred identical in-
dividuals of genotype A at the beginning of a flush epoch (in
which fitness is equated with effective complexity). In the
first step of the genetic algorithm, the bloat and shrink oper-
ators are applied to all individuals in the population and the
mutants which result are tested for viability. To test for via-
bility, the mutant is evaluated to produce a daughter, and the
daughter is evaluated to produce a granddaughter. The mu-
tant is classified as viable if the daughter and granddaughter
contain the same number (greater than zero) of bytecodes
(this is done in lieu of a much more expensive test of actual
structural equivalence). Viable mutants replace their pro-

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  10  20  30  40  50  60  70  80  90

m
ed

ia
n 

nu
m

be
r o

f r
et

ur
ns

generation

Figure 7: The median number (in a population of size 200)
of return bytecodes executed during self-replication aver-
aged over 20 runs (error bars show plus or minus one stan-
dard deviation).

genitors in the population.

The population is then subjected to crossover using tour-
nament selection. In each tournament, four individuals are
chosen at random (with replacement). The winners of two
tournaments are then combined using crossover, and the re-
sulting individual is tested for viability. The crossover oper-
ation is repeated until it yields two hundred viable individu-
als which comprise the population of the next generation.

The above process is repeated for nine more genera-
tions, then the epoch is switched to lean (in which fitness is
equated with self-replication efficiency). The genetic algo-
rithm is run for a total of 100 generations (five flush epochs
interrupted by five lean epochs).

In an initial experiment, the system was run twenty times.
The median number of interesting test bytecodes contained
in the compiled ϕ expression and the median number of re-
turn bytecodes executed during self-replication were then
plotted as a function of generation; see Figures 6 and 7. As
expected, both complexity and self-replication cost increase
in flush epochs and decrease in lean epochs. After 40 gener-
ations (two flush-lean cycles), the median complexity at the
end of flush epochs is nearly double its initial value, which
means that the majority of individuals contain 7 or more
predicates which compile to non-trivial test bytecodes not
present in the initial population. Furthermore, the median
complexity at the end of lean epochs is always 10 or more,
which suggests that either 1) the shrink operator is not fully
able to reverse the effects of the bloat operator so that one
or more bloat mutations (on average) survive through lean
epochs; or 2) one (or both) of the B and C alleles is fixed
in the population. Examination of Figure 7 shows that after
40 generations, the median self-replication cost at the end
of lean epochs is slightly more than half of its initial value.



This is consistent with evolution of one or both of the B and
C genotypes. Self-replication cost continues to increase and
decrease (depending on epoch) eventually reaching a point
where the median value at the end of the fifth lean epoch
is nearly three times smaller than the initial value. This is
consistent with the evolution of the D genotype.

After running the system 100 times, the probabilities of
the B, C, and D genotypes evolving and for the mutations
becoming fixed in the population were estimated. See Table
2. Notably, the most complex and most efficient genotype,
D, evolved within 100 generations 81 times. Additionally,
the average and median number of generations required for
each genotype to evolve and for the mutations to become
fixed were also estimated. Considering only the 81 runs in
which the D genotype evolved, the average number of gener-
ations required was approximately 36 and the median num-
ber was 29.

Table 2: Generation of initial evolution and fixation.

B C D B′ C′ D′

probability 0.90 0.91 0.81 0.89 0.78 0.70
mean 21.8 24.5 35.8 29.9 34.3 43.3

std. dev. 21.0 22.0 24.5 21.1 22.2 24.5
median 11 13 29 17 33 36

If we know the average numbers of individuals of a given
genotype in each generation, then we can compute cumula-
tive distribution functions for evolution and fixation of that
genotype; see Figure 8. If we examine the c.d.f.’s we see
several interesting things.

First, the c.d.f.’s for evolution of genotypes have zero
slope during lean epochs, which suggests that new geno-
types typically appear during flush epochs, when fitness is
equated with effective complexity. Conversely, the c.d.f.’s
for genotype fixation have zero slope during flush epochs,
which leads us to conclude that fixation of genotypes typi-
cally occurs during lean epochs, when fitness is equated with
efficiency. This is consistent with an increase in diversity
during flush epochs and a decrease during lean epochs.

Second, there is always a lag between the generations of
evolution and fixation, and the size of the lag depends on
the improvement in self-replication efficiency–the greater
the improvement, the shorter the lag. The C allele (which
confers an advantage of 119 returns relative to the A allele)
requires more time for fixation than the B allele (which con-
fers an advantage of 218 returns).

If we know the generation in which each genotype
evolved, it is possible to estimate probabilities for each of
the pathways leading from the (least complex and least effi-
cient) A genotype to the (most complex and most efficient)
D genotype; see Table 3. This analysis shows that in 64%
of the runs in which D evolved, one of the B or C alleles
evolved and was fixed prior to the evolution of the other;

Table 3: Probabilities of pathways to D genotype.

tB < tC = tD tC < tB = tD tB < tC < tD tC < tB < tD
0.33 0.31 0.26 0.09

the D genotype then evolved by mutation from an ancestral
program of the B or C genotype. However, in 35% of the
runs in which D evolved, something (arguably) more inter-
esting happened. Namely, the B and C alleles evolved in dis-
tinct lineages before either was fixed. The D genotype then
evolved when an individual with the B allele and an indi-
vidual with the C allele were combined by crossover. Stated
differently, in 35% of the runs where D evolved, beneficial
traits which evolved separately were combined by crossover
to produce a child program more complex and more efficient
than either parent program.

Future Work
This paper describes work that, although preliminary, opens
many avenues for further exploration, including

• Determining whether or not a self-replicating program
which reproduces by compiling itself can evolve the op-
timum order for the tests comprising the decision tree
which performs syntactic analysis; this would require a
new mutation operator which can reorder nested-if ex-
pressions.

• Determining whether or not it is possible to evolve dead
code elimination, which would be a useful optimization
in a system which includes mutation operators (like bloat)
which (in effect) introduce dead code; to accomplish this,
the bloat operator would have to generate a much larger
set of φ expressions, including dereferencing source code
with car and cdr combinations.

• In the present system, de Bruijn indices are used mainly to
simplify the compilation process by eliminating the need
for static analysis; however, it is difficult to see how new
lexical scopes could evolve (via a new mutation operator
which introduces lambda expressions) unless bound vari-
ables are represented by symbols, and this would mean
that the self-hosting compiler must be generalized so that
it performs static analysis.

• Demonstration of auto-constructive evolution as de-
scribed by (Spector and Robinson, 2002), in which arti-
ficial organisms possess not only their own means of self-
replication, but also of producing variation; this would re-
quire coding all mutation operators in Skeme and includ-
ing this code in the subtree of the self-hosting compiler
which copies quoted expressions.

• Reification of the compiling quine as a self-replicating
distributed virtual machine (including the items listed
above) and demonstration of evolution of increased com-
plexity and self-replication efficiency by reified artificial
organisms.



 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60  70  80  90

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

generation

B (evolved)
B (fixed)

C (evolved)
C (fixed)

D (evolved)
D (fixed)

Figure 8: Cumulative distribution functions representing the
probabilities that genotypes B, C, and D have evolved and
are fixed by the given generation.

Conclusion

We introduced a new type of self-replicating program which
(unlike previous self-replicating programs) includes distinct
phenotype and genotype components. Although the pro-
gram is encoded in machine language, and (for this reason)
can be executed on a CPU (or reified as a distributed vir-
tual machine) it reproduces by compiling itself from its own
source code, which is written in a more expressive high-level
language. Because compiling is an intrinsically more com-
plex process than copying, there is a much larger space of
implementations to be explored by an evolutionary process;
because its genotype is encoded in a high-level language, the
space of neighboring self-replicating programs can be more
efficiently probed.

To address the problem of how a complicated lexically
scoped program like a compiler can evolve into a more com-
plex and efficient program without breaking, we designed,
implemented and tested a novel genetic programming sys-
tem, which uses a pair of mutation operators analogous to
gene duplication and specialization, together with homolo-
gous crossover and an alternating fitness function which se-
lects for complexity or efficiency depending on epoch. Us-
ing this system, we experimentally demonstrated the evolu-
tion of several self-replicating programs of increased com-
plexity and efficiency from a less complex and less efficient
ancestor. We were able to show that in a population of 200
individuals, the most complex and efficient self-replicating
program evolved within 100 generations in over three quar-
ters of all trials, and by crossover of less complex and less
efficient parent programs a significant fraction of the time.

Acknowledgements

Thanks to Jeff Barnett, Stephanie Forrest, Ben Edwards,
Neal Holtschulte and Melanie Moses for helpful comments.

References
Adami, C., Brown, C. T., and Kellogg, W. (1994). Evolutionary

learning in the 2D artificial life system “Avida”. In Artificial
Life IV, pages 377–381. MIT Press.

De Bruijn, N. G. (1972). Lambda calculus notation with name-
less dummies: a tool for automatic formula manipulation,
with application to the Church-Rosser theorem. Indagationes
Mathematicae, 34:381–392.

D’haeseleer, P. (1994). Context preserving crossover in genetic
programming. In IEEE World Congress on Computational
Intelligence, pages 27–29.

Dybvig, R. K. (1987). Three implementation models for Scheme.
PhD thesis, University of North Carolina.

Finnigan, G., Hanson-Smith, V., Stevens, T., and Thornton, J. W.
(2012). Evolution of increased complexity in a molecular
machine. Nature, 481(7381):360–364.

Kirshenbaum, E. (2000). Genetic programming with statically
scoped local variables. In Genetic and Evolutionary Com-
putation (GECCO).

Koza, J. (1994). Artificial life: spontaneous emergence of self-
replicating and evolutionary self-improving computer pro-
grams. In Langdon, C., editor, Artificial Life III, pages 225–
262. Addison Wesley.

Koza, J., Bennet, F., Andre, D., and Keene, M. (1999). The design
of analog circuits by means of genetic programming. Evolu-
tionary Design by Computers, pages 365–385.

Offman, M. N., Tournier, A. L., and Bates, P. A. (2008). Alter-
nating evolutionary pressure in a genetic algorithm facilitates
protein model selection. BMC Structural Biology, 8(34).

Pujol, J. C. F. (1999). Evolution of artificial neural networks us-
ing a two-dimensional representation. PhD thesis, School of
Computer Science, University of Birmingham, UK.

Ray, T. S. (1994). An evolutionary approach to synthetic biology,
zen and the art of creating life. Artificial Life, 1:179–209.

Spector, L. and Robinson, A. (2002). Genetic programming
and auto-constructive evolution with the push programming
language. Genetic Programming and Evolvable Machines,
3(1):7–40.

Stephenson, M., Amarasinghe, S. P., Martin, M. C., and O’Reilly,
U. (2003). Meta optimization: improving compiler heuristics
with machine learning. In Cytron, R. and Gupta, R., editors,
PLDI, pages 77–90. ACM.

Taylor, T. and Hallam, J. (1997). Studying evolution with self-
replicating computer programs. In Fourth European Conf. on
Artificial Life, pages 550–559. MIT Press.

Williams, L. (2012). Robust evaluation of expressions by dis-
tributed virtual machines. In Unconventional Computation
and Natural Computation (UCNC), Orleans, France.

Zou, R. and Lung, W. (2004). Robust water quality model calibra-
tion using an alternating fitness genetic algorithm. J. Water
Resource Planning Management, 130(6):471–479.


