An FPGA Implementation of a Distributed
Virtual Machine

Lee A. Jensen and Lance R. Williams

Dept. of Computer Science, University of New Mexico, Albuquerque, NM 87131

Abstract. An expression in a functional programming language can
be compiled into a massively redundant, spatially distributed, concur-
rent computation called a distributed virtual machine (DVM). A DVM
is comprised of bytecodes reified as actors undergoing diffusion on a
two-dimensional grid communicating via messages containing encapsu-
lated virtual machine states (continuations). Because the semantics of
expression evaluation are purely functional, DVMs can employ massive
redundancy in the representation of the heap to help ensure that com-
putations complete even when large areas of the physical host substrate
have failed. Because they can be implemented as asynchronous circuits,
DVMs also address the well known problem affecting traditional machine
architectures implemented as integrated circuits, namely, clock networks
consuming increasingly large fractions of area as device size increases.
This paper describes the first hardware implementation of a DVM. This
was accomplished by compiling a VHDL specification of a special purpose
distributed memory multicomputer with a mesh interconnection network
into a globally asynchronous, locally synchronous (GALS) circuit in an
FPGA. Each independently clocked node combines a processor based
on a virtual machine for compiled Scheme language programs, with just
enough local memory to hold a single heap allocated object and a con-
tinuation.

1 Introduction

Research in artificial life often involves the construction of virtual worlds popu-
lated by artificial organisms reproducing and competing for resources. Whether
the artificial organisms are programs encoded in assembly language [3,23] or
cellular automata [19,29], concrete implementations make their resource use ex-
plicit, which is necessary for meaningful competition. In contrast, in genetic
programming, programs are typically encoded in high-level languages, so that
mutation and crossover can more efficiently explore the space of computations
that solve a given problem [17,25]. Although this permits more rapid evolution,
the resource use of programs encoded in high-level languages can be difficult to
accurately gauge. Ideally, the two approaches could be combined: self-replicating
programs written in a high-level language could be compiled into concrete im-
plementations in a virtual world where they would efficiently evolve into more
complex forms by competing for resources.

As a step in this direction, one of us (the second author) recently described
a novel artificial organism based on a self-hosting compiler for a small subset
of Scheme [31]. The gap between abstract self-description (faster evolution) and
concrete implementation (transparent use of resources) was spanned by making
the artificial organism an object program that replicates by compiling its own
source code. Both object program (phenome) and source program (genome)
were reified as a distributed virtual machine (DVM), a spatially distributed,
concurrent computation that can be implemented as an array of communicating
finite state machines, or asynchronous cellular automata.

Unfortunately, simulation of the replication process on a laptop computer
required nearly 8 hours to finish. It goes without saying that without a huge
speedup, the importance of self-replicating DVMs based on self-hosting com-
pilers in evolutionary computation research will remain purely theoretical. The
work described in the paper you are reading has, as its very practical goal, the
design, implementation, and testing of a special purpose distributed memory
multicomputer system able to host large numbers of self-replicating DVMs and
speed up their execution by four orders of magnitude.

1.1 Emulation of SIMD by MIMD

At the present time, all of the world’s fastest computers are multicomputers com-
posed of a large number of general purpose processors with local memory (nodes)
linked by a fast interconnection network. In Flynn’s taxonomy [14], computers
with this architecture are classified as distributed memory, multiple instruction,
multiple data (MIMD) systems (see Figure 1).

Given the potential of multicomputers to run different programs on different
nodes (the first ‘M’ in MIMD), it’s remarkable that this rarely happens. Indeed,
this capability is not used when solving instances of the class of problems to
which they are most commonly applied, i.e., so-called embarrassingly parallel
problems for which it is possible to achieve a speedup of up to n times on n
nodes [5]. Most commonly, multicomputers function as globally asynchronous,
locally synchronous (GALS) emulations of very large, single instruction, mul-
tiple data (SIMD) systems.! Although using a multicomputer like this might
not fully exploit its capabilities, it is nevertheless useful because synchronous
implementations of SIMD systems do not scale; a global clock signal cannot
be transmitted to increasing numbers of spatially distributed nodes without a
corresponding increase in transmission latency.

1.2 Emulation of SISD by MIMD

Synchronous implementation also limits the scalability of more conventional sin-
gle instruction, single data (SISD) systems. As the number of components in an

! This brings to mind the very interesting result concerning the ability of asynchronous
cellular automata to emulate synchronous cellular automata with negligible slow-
down([8].

shared memory
Cray X-MP multiprocessor
SIMD CM-1 MIMD
simple [ACA
nod distributed memory
ode multicomputer
complex | DVM CM-5
small large
SISD PDP 11 memery MISD

Fig.1. Flynn’s taxonomy [14] showing the relationship between SISD, SIMD and
MIMD systems. The distributed virtual machine (DVM) implemented using VHDL
and compiled to an FPGA is a distributed memory MIMD system where the nodes are
processors based on Dybvig’s virtual machine for Scheme[13] with a small amount of
local memory (enough to hold a single heap allocated object and a continuation).

integrated circuit implementation of a SISD system increases, the fraction of the
circuit devoted to the distribution of the clock signal increases correspondingly.
This ultimately limits the number of components a fully synchronous circuit can
contain [12].

We have seen that multicomputers can host very large SIMD computations,
and in doing so, overcome the scalability limitations of fully synchronous im-
plementations. It is worth asking whether a multicomputer can likewise host
very large SISD computations, i.e., computations requiring address spaces sig-
nificantly larger than the address space of any single node of the network, and
in doing so, overcome the scalability limitations of synchronous implementations
of SISD systems.

This question has been answered in the affirmative in prior work reported in
this conference on distributed virtual machines (DVMs) [30]. The key insight un-
derlying DVMs is that expression evaluation can be implemented as a spatially
distributed, asynchronous, message passing computation. The program heap (in-
cluding the bytecodes representing the compiled program itself) is reified as a
set of actors that can be distributed across the nodes of a distributed memory
MIMD system. Each node combines a general purpose processor with a small
amount of local memory. Actors can send messages containing encapsulated vir-
tual machine states, i.e., continuations, to actors hosted on adjacent nodes. They
can also allocate new heap objects (also reified as actors) on adjacent nodes (if
the nodes are empty). So that any actor can (in principle) communicate with
any other actor, and in order to make space for new heap objects, all actors
are subject to constant random motion (diffusion) which moves them between
adjacent nodes of the network.

It is ironic that in the emulation of a SIMD system by a multicomputer, that
a large part of the system’s distributed memory is inefficiently used representing

millions of identical copies of the same program (one copy per node), while in
the emulation of a SISD system described above, a single copy of the program is
efficiently distributed across all nodes. Sadly, due to the extreme slowness of the
diffusion-based message passing, a DVM system like the above is unlikely to be
built any time soon. Indeed, it is likely to be useful only when solving problems
for which one is willing to wait a long time for the answer, yet also require a
very large address space and cannot be decomposed into parallel subproblems.?
Because this combination of factors is unlikely to occur in practice, it would
seem that DVMs hosted on multicomputers are of purely theoretical interest.
Happily, DVMs do have one advantage relative to conventional SISD systems,
which is, they can use redundancy in the spatially distributed heap to solve
problems more robustly.

1.3 Robust Evaluation of Expressions

Pure functional programming languages possess a property termed referential
transparency that allows programs to be treated like expressions in mathematics
[21]. In particular: 1) the value of an expression cannot depend on the order
of evaluation of its subexpressions; and 2) functions must always return the
same value when applied to the same arguments. Since side-effects would vio-
late both properties, they are strictly forbidden. It follows that heap allocated
objects in pure functional programming are immutable, i.e., once created, they
can never be changed.®> The immutability of heap allocated objects has signifi-
cant implications for DVMs since it means that multiple instances of each object
(including bytecodes) can coexist in the same spatially distributed heap without
inconsistency. Furthermore, multiple continuations representing parallel execu-
tion threads (each at a different point of progress) can also coexist in the same
DVM. Because of referential transparency, objects created on one thread are
completely interchangeable with objects created on other threads.

A DVM hosted on a modular substrate where each module represents a small
fraction of the multicomputer nodes and interconnection network would possess
some interesting features. First, hosted computations could survive the failure of
a large fraction of the modules comprising the substrate. Second, modules could
be added to the substrate either to replace modules that have failed or to extend
it; hosted computations would proceed uninterrupted. Although this would not
speed up a hosted computation, it would increase the likelihood that it will
finish. Together, these two design features raise the possibility of computations
with lifetimes longer than the hardware that hosts them.

2 Deep Thought from The Hitch Hiker’s Guide to the Galazy comes to mind.

3 Despite this apparent limitation, functional programming languages are extremely
expressive and modern compilers exploit referential transparency to perform power-
ful code optimizations.

registers
frame val

pc

compilation

val
accumulator

arguments ———= ’

{~ environment .
frames ‘ val ‘
argument stack
v
al

pc | args | env

constant

argument

constant

II;

argument constant

constant .
/\ apply * . '
apply + val pc ‘ env

environment stack frame stack

Fig. 2. Dybvig’s virtual machine for evaluating compiled Scheme expressions showing
its registers and associated heap-allocated data structures.

2 Virtual Machine

The process of evaluating expressions by compiling them into bytecodes which
are executed on a VM was first described by Landin [18] for Lisp and was
generalized for Scheme by Dybvig [13]. Because it plays an important role in
our work, it is worth examining Dybvig’s model for Scheme evaluation in some
detail.

Expressions in Scheme can be numbers, booleans, primitive functions, clo-
sures, symbols, and pairs. A closure is an expression with free variables together
with a reference to the lexical environment; these two items suffice to describe
a function in Scheme. Symbols can serve as names for other expressions and
pairs are the basic building blocks of lists. As such, they are used to represent
both Scheme source code and list-based data structures. All other types are
self-evaluating, that is, they are simply constants.

Evaluating an expression which is not a constant or a symbol requires saving
the current evaluation context onto a stack, then recursively evaluating subex-
pressions and pushing the resulting values onto a second stack. The second stack
is then reduced by applying either a primitive function or a closure to the values
it contains. Afterwards, the first stack is popped, restoring the prior evalua-
tion context. Expressions in Scheme are compiled into trees of bytecodes which
perform these operations when the bytecodes are interpreted. For book keeping
during this process, Dybvig’s VM requires five registers (see Figure 2).

With the exception of the accumulator, which can point to an expression of
any type, and the program counter, which points to a position in the tree of
bytecodes, each of the registers in the VM points to a heap allocated data struc-
ture comprised of pairs; the environment register points to a stack representing
the values of symbols in enclosing lexical scopes, the arguments register points
to the stack of values which a function (or closure) is applied to, and the frames
register points to a stack of suspended evaluation contexts.

Evaluation occurs as the contents of these registers are transformed by the
interpretation of the bytecodes. For example, the constant bytecode loads the
accumulator with a constant, while the refer bytecode loads it with a value from
the environment stack. Other bytecodes push the frame and argument stacks
(and allocate the pairs which comprise them). For example, the frame bytecode
pushes an evaluation context onto the frame stack while the argument bytecode
pushes the accumulator (which holds the value of an evaluated subexpression)
onto the argument stack. Still other bytecodes pop these stacks. For example, the
apply bytecode restores an evaluation context after applying a primitive function
(or a closure) to the values found in the argument stack, leaving the result in
the accumulator.

The most important of the remaining bytecodes in Dybvig’s VM is close
which constructs a closure and places a pointer to it in the accumulator. We
have extended Dybvig’s VM with a bytecode which is identical to his close
bytecode except that the first value in the enclosed lexical environment of a
closure created by our bytecode is a self-pointer. This device makes it possible
to define recursive functions without the need for a mutable global environment.
In this way, we preserve referential transparency without incurring the overhead
associated with the use of the applicative order Y-combinator.

3 Distributed Virtual Machine

The actors comprising the distributed heap can represent any of the datatypes
permissible in Scheme including numbers, booleans, primitive functions, clo-
sures, and pairs. Significantly, they can also represent the bytecodes of a com-
piled Scheme program. Like other heap-objects, a bytecode actor will respond
to a get message by returning its value, but unlike actors representing other
heap-objects, it can also send and receive encapsulated virtual machine states,
or continuations. Upon receipt of a continuation, a bytecode actor transforms it
in a manner specific to its type, then passes it on to the next bytecode in the
program, and so on, until the continuation reaches a halt bytecode at which point
the accumulator field of the continuation contains the result of evaluating the
expression. In contrast to a conventional VM, where all control is centralized,
control in a DVM is distributed among the bytecodes which comprise it; instead
of fetching bytecodes to one location where they update centralized virtual ma-
chine state, we encapsulate that state and pass it from one bytecode actor to
the next (see Figure 3).

Recall that applying a function requires the construction of a stack of eval-
uated subexpressions. In the simplest case, these subexpressions are constants,
and the stack is constructed by executing the constant and argument bytecodes
in alternation. We will use this two bytecode sequence to illustrate the operation
of a DVM in more detail.

An actor of type constant bytecode in the locked state loads its accumulator
with the address of its constant valued operand and enters the continue state.
When a bytecode actor in the continue state sees its child in the bytecode tree

frame CONTROL
constant
argument pc
accumulator
MEMORY constant
argument arguments
environment
constant
apply frames
ACTOR MESSAGE
sexprs = 99 [soxprs =33 | sexprs=34
acc=0 constant acc =3 s
args = () :: > I::> args = () I::> argument :> args = (3)
env=() 3 env = () =0
frames frames frames
receive receive
ready\O = O locked ready\O — O locked
AN / A ‘
acc=3 send args =
send\ y i sexprs++ V "
O continue continue ~ - & pu
O { &
CONTROL CONTROL

Fig. 3. Conventional virtual machine (top) and distributed virtual machine (bottom).
In the DVM, the registers are encapsulated in a message called a continuation which
is passed between bytecodes reified as actors. The sexprs register in the continuation
holds the next free address on the execution thread. No program counter is needed
since each bytecode actor knows the address of its children in the bytecode tree. Each
actor is a finite state machine which transforms the continuation in manner specific to
its type then passes it to the next bytecode in the program. Control is distributed not
centralized.

in its neighborhood, it overwrites the child actor’s registers with the contents of
its own, sets the child actor’s state to locked, and returns to the ready state.

The behavior of an actor of type argument bytecode in the locked state is
more complicated. It must push its accumulator onto the argument stack, which
is comprised of heap-allocated pairs. Since this requires allocating a new pair, it
remains in the put state until it sees an adjacent empty site in its neighborhood.
After creating the new pair actor on the adjacent empty site, it increments the
register representing the last allocated heap address (for this execution thread)
and enters the continue state.

For the most part, we have faithfully implemented the heap-based compiler
for Scheme described by Dybvig [13] and have also respected the semantics of his
VM in the implementation of the transformations performed on continuations
by the bytecode actors which comprise our DVMs.

4 Four Implementation Models

In this section we describe four possible approaches to implementing DVMs,
culminating in the approach which is the focus of this paper, a globally asyn-

chronous, locally synchronous circuit implemented using a field programmable
gate array (FPGA).

4.1 Shared Memory Multiprocessor

Erlang [6] is a functional programming language based on the actor model of con-
current computation [4, 7, 11]. Because communicating processes (actors) do not
share state, all communication is by message passing. Actors can send messages
to others if they possess their identifiers.

Given its support for the actor model, it would be straightforward to im-
plement a DVM in Erlang; bytecodes and other heap allocated objects would
be represented by actors and unique identifiers would be associated with heap
addresses. A native code compiler would then compile the Erlang source code
into one (or more) object programs which would then run on a uniprocessor (or
a shared memory multiprocessor) system.

Sadly, the DVM implementation described above would have no advantages
relative to a conventional SISD computer. Notably, it would not permit the
simulation of SISD computations with address spaces larger than the memory of
the shared memory multiprocessor. Furthermore, its lack of redundancy would
give it no additional robustness.

4.2 Distributed Memory Multicomputer

This leads to a second possible DVM implementation. Erlang can (in principle)
be compiled to set of programs distributed across the nodes of a multicomputer
[33]. If the number of processors permitted, the addresses of heap allocated ob-
jects could be mapped to actors in one-to-one fashion, and actors (in turn) to
nodes in many-to-one fashion using a static allocation strategy. The fact that
the mapping is static would allow efficient routing of messages between commu-
nicating processes. Unlike the multiprocessor implementation sketched above, a
multicomputer implementation would indeed be able to simulate a SISD com-
putation with an address space larger than the memory contained in any single
node. Furthermore, if the number of processors permitted redundancy in the
representation of the distributed heap (the one-to-one address to actor map-
ping replaced by a one-to-many mapping), then the implementation would also
be robust to node failure. However, the property which makes routing of mes-
sages relatively efficient, i.e., static allocation, is incompatible with the design
principle of indefinite scalability.

4.3 Movable Feast Machine

In recent work, Ackley et al. [1] introduced the idea of a distributed memory
multicomputer system with an address space of a priori unknown size. Such an
indefinitely scalable computer consists of independently clocked modules which
tile space and only communicate with neighboring modules. Because information

can propagate no faster than the speed of light, and because processing elements
have finite size, processors and memory in an indefinitely scalable computer must
be spatially distributed.

The multicomputer implementation described in the last section is not in-
definitely scalable since the specifics of any static allocation strategy permitting
efficient message routing would necessarily depend on the number of nodes in the
network. This suggests a third possible DVM implementation, based on reified
actors. Unlike actors in the classical actor model, which inhabit an absolute ad-
dress space indexed by unique global identifiers, reified actors occupy locations
on a 2D grid, and can only communicate with other actors in their neighborhoods
[30]. This restriction, together with the fact that expression evaluation can po-
tentially require a message to be sent from any object to any other object in the
address space, necessitates the constant random motion of actors representing
heap allocated objects on the grid.

In more recent work, Ackley and Ackley [2] describe a concurrent program-
ming language for implementing reified actor models. In theory, ulam serves as
a high-level interface to a low-level substrate consisting of an array of asyn-
chronous cellular automata (ACA). In practice, it is a compiled language that
targets an indefinitely scalable modular computer called the Movable Feast Ma-
chine (MFM).

Like the multicomputer implementation, an MFM implementation of a DVM
would be able to simulate a SISD computation with an address space larger than
the memory contained in any single node. It would also be robust to failure of
MFM modules. However, unlike the multicomputer implementation, it would (in
fact) be indefinitely scalable, since modules could (in principle) be added to the
machine and a running DVM computation could make effective use of them by
increasing the redundancy of its heap representation.

Each module of the MFM contains a single processor with enough memory
to simulate a small contiguous region of the (potentially) infinite 2D grid which
forms the domain of a spatial computation. Although the size of this region is
variable, in typical applications, modules simulate regions comprised of 48 x 48
sites, or 2304 sites per processor. A more direct and potentially much more ef-
ficient DVM implementation would allocate one processor per site, and these
processors would implement the instruction set of the Dybvig virtual machine in
hardware (as opposed to interpreting bytecodes in software).* These final refine-
ments lead to a fourth possible implementation, the one we actually pursued.

4.4 Field Programmable Gate Array

Although they differ in significant respects, the three implementation models
described thus far have one thing in common, namely, they all represent byte-
codes and other heap allocated objects as communicating processes (actors). In
the multiprocessor and multicomputer implementations, the actors existed in a

4 The first integrated circuit implementation of a processor customized for efficient
execution of compiled Lisp programs was described by Steele and Sussman [16].

non-physical, abstract identifier space. In the MFM implementation, the actors
were reified by assigning them positions on a 2D grid and relying on diffusion for
message passing. The fourth implementation is also actor-based, but the actors
represent processors in a mesh-connected network, not heap allocated objects.

A field programmable gate array (FPGA) consists of an array of programmable
logic blocks together with a configurable interconnection network [15]. By means
of programming in the field, i.e., after manufacture, FPGAs are capable of im-
plementing a huge combinatorial space of application specific integrated circuits.
VHDL is a concurrent programming language designed by the Dept. of Defense
in the 1980s as a hardware description language for very high speed integrated
circuits [22]. Used judiciously, a concurrent program written in VHDL can be
automatically compiled to an FPGA implementation. The compilation (syn-
thesis) process assigns VHDL constructs to individual logic blocks in specific
locations in the device and configures the interconnection network to implement
the specified functionality.

Although VHDL can (like Erlang) be used as a general purpose concurrent
programming language, if it was merely used to implement a simulation of a
DVM where bytecodes and heap allocated objects were represented as commu-
nicating processes (like the three other implementations), then there would be
no reason to believe that the resulting concurrent program would be synthe-
sizeable, i.e., could be compiled to an FPGA implementation [9]. Furthermore,
even if the program were synthesizeable, then there would be no reason to be-
lieve that its synthesized elements would operate with enough parallelism to
produce a speedup relative to a sequential implementation; a concurrent pro-
gram at a different level of abstraction is required to guarantee both of these
properties. To ensure both synthesizeablity and effective parallelism, the com-
municating VHDL processes must represent the nodes of a distributed memory
multicomputer hosting a DVM, not the heap allocated objects comprising the
DVM itself.?

5 Technical Details

In our VHDL specification, the processes modeling multicomputer nodes are
driven by independent local clocks implemented as ring oscillators [24]. A ring
oscillator typically consists of an odd number of NOT gates connected in series
with the last gate connected to the first gate in a feedback loop; see Figure 4
(top). The odd number of gates insures that the output of the last gate is inverted
compared to the input of the first gate. When power is applied, the circuit
begins to oscillate spontaneously at a period of approximately twice the sum
of the individual gate delays. The frequency of the oscillator can be decreased
or increased by adding (or removing) an odd number of gates to (or from) the
ring. Unfortunately, the use of ring oscillators in FPGA design is problematic
since most design tools aggressively try to prevent these so-called combinatorial

5 Others have used FPGAs to implement distributed memory multicomputers as ar-
rays of soft processors [27,28].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
r(1H0H7H0H1H1H0H0H1H1H1H0H0H0H0H1\

0

Fig. 4. Ring oscillator used to provide independent timing signals (top) and 16-bit
Fibonacci linear feedback shift register (LFSR) used for pseudorandom number gener-
ation (bottom) at each node.

loops and aggressively optimize away what seem to be superfluous gates. These
optimizations can be overcome using directives that allow for combinatorial loops
and marking gates to be excluded from removal during optimization. We generate
a ring oscillator at each node with a random length between 9 and 31 gates
resulting in a clock frequency in the range 30 MHz - 100 MHz.

The globally asynchronous, locally synchronous circuit requires a source of
randomness to implement the diffusion process that enables message passing.
After exploring pseudorandom number generation using cellular automata, and
true random number generation using ring oscillators, we settled on linear feed-
back shift registers (LFSR), a simple and commonly used method of generating
pseudorandom numbers in hardware [20]. More specifically, we used a 16-bit Fi-
bonacci LFSR in our implementation; see Figure 4 (bottom). Each node contains
a process implementing the LFSR that is clocked by a local ring oscillator. At
each clock tick, the register shifts right 1 bit and the bit positions called taps
are combined by XOR and fed back to the leftmost (input) bit. The output is
the rightmost bit of the LFSR. A maximum-length period (2" — 1) is produced
if the polynomial defined by the taps has an even number of terms and the tap
indices are co-prime. In our implementation the seed and taps for each of the
16-bit LFSRs are randomly assigned by the code generator.

Communication and transfer of data between two nodes with independent
clocks requires that the two nodes agree both that: 1) the transfer is going to
occur; and 2) that the transfer has finished. If this agreement does not occur,
multiple processes might simultaneously attempt to read or write data to a
single node, resulting in an inconsistent device state. To avoid this problem, our
design uses a four phase handshake protocol to ensure that data transfer between
adjacent nodes is synchronized[10].

6 Experimental Results

We have implemented a DVM with an 8 bit address space on a Xilinx XC7A100
CSG324-2 FPGA [32]. The FPGA chip is manufactured using 28 nm technology
and contains 101,440 logic blocks. The FPGA is hosted on a Trenz Electronics

development board with a 100 MHz clock that communicates with the Xilinx
Vivado Design Suite running on a Windows PC via a JTAG to USB adapter.
We have been able to use this FPGA to implement DVMs with up to 40 nodes.
To demonstrate the speedup due to parallelism in the implementation, we have
conducted an experiment using the expression

(pred (+ 2 3))

where pred is the function that subtracts one. This expression compiles to 12
bytecodes. During evaluation, 5 additional actors representing heap allocated
objects (2 numbers and 3 pairs) are created. It follows that there is enough
room on a 4 x 5 grid to host the actors comprising the distributed heap at its
maximum size of 17.

Density is grid size divided by redundancy. There is a complex relationship
between density and expected evaluation time. Expected evaluation time is a
function of both expected message passing latency and expected object alloca-
tion time. Expected message passing latency decreases with increasing density
because senders of messages must wait less time before encountering the re-
cipients of their messages. However, expected object allocation time increases
because actors allocating objects must wait longer for empty sites to appear in
their neighborhoods.® Tt follows that for a given expression and desired level of
robustness, there is a density that minimizes expected evaluation time.

The experiment was run with three different conditions: 4x5 (x 1), 8x5(x 1)
and 8 x 5 (x 1) where m x n (x k) indicates a grid of size m x n initialized
with k copies of each bytecode actor. These conditions were chosen because the
second and third have twice the number of nodes as the first, while the first and
third have equal actor density. Equal density removes the confounding factors
of different message passing latencies and different object allocation times. It
consequently permits measurement of parallel speedup.

A code generator written in Java generates the VHDL code at the desired
grid size and randomly populates the grid with the bytecode actors representing
the compiled expression at the desired level of redundancy. The VHDL code
is then synthesized by the design tool, which outputs a bitstream that is used
to program the FPGA. We also insert the Integrated Logic Analyzer (ILA)
core into the bitstream so we can capture data from the running device for our
experimental results.

The implementation contains an additional process driven by the 100 MHz
development board clock that increments a 32 bit counter on each clock pulse.
This counter is used to get accurate timing at 10 ns intervals per counter incre-
ment. When a halt bytecode receives a continuation, the counter is stopped and
the ILA is triggered to capture data. The counter value is the time required by
the DVM to evaluate the compiled expression. Three different conditions were
tested and each condition was run ten times. Evaluation times are shown in
Table 1.

5 Think of the so-called “8-puzzle” and its sliding plastic tiles.

Table 1. Evaluation time in microseconds (us)

4x5(x1)8x5(x1)8x5(x2)
mean 1321.65 1953.48 1585.64
standard deviation| 471.46 603.38 391.80

The 8 x 5 (x 1) condition is slower than the 4 x 5 (x 1) condition because
the lower actor density increases message passing latency. Actors must diffuse
twice as long on average before bumping into the recipients of their messages.
However, it is not twice as slow, and this is because of the decreased expected
object allocation time of the 8 x 5 (x 1) condition. A heap containing 17 objects
barely fits on the 4 x 5 grid but there is plenty of room on the 8 x 5 grid.

Consistent with the fact that expected message passing latency decreases
with increasing density, we observe that the 8 x 5 (x 2) condition is faster than
the 8 x 5 (x 1) condition. However, it is not twice as fast, and this is because
of the increased expected object allocation time of the 8 x 5 (x 2) condition. A
heap containing 34 objects barely fits on the 8 x 5 grid but a heap containing
17 objects fits quite easily.

Finally, the evaluation time for the 8 x 5 (x 2) condition is only slightly
longer than for the equal density 4 x 5 (x 1) condition. This demonstrates that
the FPGA implementation is an actual parallel circuit, solving a problem of twice
the size in (essentially) the same amount of time. We believe that the evaluation
time for the 8 x 5 (x 2) condition is longer because the implementation of the
DVM on the 8 x 5 grid very nearly fills the entire FPGA, resulting in less
efficient component placement by the synthesis algorithm. We hypothesize that
if the experiment were repeated using an FPGA with extra capacity, then the
ratio of the times required to solve the different sized problems in the case of
equal densities would be closer to one.

7 Conclusion

Recent work showed how an expression in a functional programming language
can be compiled into a massively redundant asynchronous spatial computation
called a distributed virtual machine (DVM). Because the semantics of expression
evaluation are purely functional, DVMs can employ massive redundancy in the
representation of the heap to help ensure that computations complete even when
large areas of the physical host substrate have failed [30]. Because they can
be implemented as asynchronous circuits, DVMs also address the well known
problem affecting traditional machine architectures implemented as integrated
circuits, namely, clock networks consuming increasingly large fractions of area
as device size increases.

Although the use of self-replicating DVMs [31] in evolutionary computation
research can potentially combine the advantages of the artificial life and genetic
programming approaches, this cannot happen without a DVM implementation

in hardware that is orders of magnitude faster than current software simula-
tions. In this paper, we have described the first hardware implementation of a
DVM. This was accomplished by synthesizing a globally asynchronous, locally
synchronous circuit in an FPGA from a VHDL specification of a special pur-
pose distributed memory multicomputer with a mesh interconnection network.
The nodes of the multicomputer combine a processor based on Dybvig’s virtual
machine for executing compiled Scheme programs [13] with just enough local
memory to hold a single heap allocated object and a continuation. Each node
contains its own clock and pseudorandom number generator and synchronization
between adjacent nodes is implemented using a four phase handshake protocol. A
working implementation consisting of 40 nodes arranged in a 5 x 8 grid was used
to evaluate a compiled Scheme expression. Significantly, the measured evalua-
tion times were consistent with a parallel implementation. Use of FPGA devices
with greater numbers of logic blocks will allow the implementation and testing
of DVMs with larger grid sizes, capable of evaluating more complex expressions
and with increased levels of redundancy.

References

1. David H. Ackley, Daniel C. Cannon, and Lance R. Williams. A movable archi-
tecture for robust spatial computing. The Computer Journal, 56(12):1450-1468,
2013.

2. D.H. Ackley and E.S. Ackley. The ulam programming language for artificial life.
Artificial Life, 22:431-450, 2016.

3. Chris Adami, C. Titus Brown, and W.K. Kellogg. Evolutionary learning in the
2D artificial life system “Avida”. In Artificial Life IV, pages 377-381. MIT Press,
1994.

4. Gul Agha. An overview of actor languages. ACM SIGPLAN Notices, 21(10):58-67,
1986.

5. Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the Spring Joint Computer Conference,
pages 483-485, 1967.

6. Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

7. Henry Baker. Actor Systems for Real-Time Computation. PhD thesis, MIT, Jan-
uary 1978.

8. Piotr Berman and Janos Simon. Investigations of fault-tolerant networks of com-
puters. In STOC, pages 66—77, 1988.

9. Eduardo Bezerra and Djones Vinicius Lettnin. Synthesizable VHDL Design for
FPGAs. Springer, 2013.

10. Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. Jour-
nal of the ACM, 30(2):323-342, 1983.

11. Will Clinger. Foundations of Actor Semantics. PhD thesis, MIT, 1981.

12. Peter J. Denning and Ted G. Lewis. Exponential laws of computing growth. Com-
munications of the ACM, 60(1):54-65, January 2017.

13. R. Kent Dybvig. Three Implementation Models for Scheme. PhD thesis, University
of North Carolina, 1987.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

M. J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.
Computer, C-21(9):948-960, 1972.

Scott Hauck and Andre DeHon. Reconfigurable Computing: The Theory and Prac-
tice of FPGA-Based Computation. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2007.

Guy L. Steele Jr. and Gerald J. Sussman. Design of a LISP-based microprocessor.
Commun. ACM, 23(11):628-645, 1980.

John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

P. J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308-320, 1964.

Christopher G Langton. Self-reproduction in cellular automata. Physica D: Non-
linear Phenomena, 10(1):135-144, 1984.

T.G. Lewis and W.H. Payne. Generalized feedback shift register pseudorandom
number algorithm. Journal of the ACM, 20(3):456—-468, 1973.

John C. Mitchell. Concepts in Programming Languages. Cambridge University
Press, New York, NY, USA, 2002.

Volnei A. Pedroni. Circuit Design with VHDL. MIT Press, Cambridge, MA, USA,
2004.

Thomas S. Ray. An evolutionary approach to synthetic biology, Zen and the art
of creating life. Artificial Life, 1:179-209, 1994.

M. Singh, S.M. Ranjan, and Z. Ali. A study of different oscillator structures. Inter-
national Journal of Innovative Research in Science, Engineering and Technology,
3(5), 2014.

L. Spector and A. Robinson. Genetic programming and auto-constructive evolu-
tion with the Push programming language. Genetic Programming and Evolvable
Machines, 3(1):7-40, 2002.

Gerald J. Sussman and Guy L. Steele Jr. Scheme: An interpreter for extended
lambda calculus. Higher-Order and Symbolic Computation, 11(4):405-439, 1998.
W. Vanderbauwhede and K. Benkrid. High-Performance Computing Using FP-
GAs. Springer, 2013.

I. Vassanyi. Implementing processor arrays on FPGAs. In International Workshop
on Field Programmable Logic and Applications, pages 446—450, Tallinn, Estonia,
1998.

John von Neumann. Theory of self-replicating automata. Urbana: University of
1llinois Press, 1966.

Lance R. Williams. Robust evaluation of expressions by distributed virtual ma-
chines. In Unconventional Computation and Natural Computation, pages 222233,
Orleans, France, 2012.

Lance R. Williams. Self-replicating distributed virtual machines. In 14th Intl.
Conf. on the Synthesis and Simulation of Living Systems (ALIFE ’14), New York,
NY, 2014.

Xilinx. 7 Series FPGAs Data Sheet: Overview, August 2017.

Beshar Zuhdy, Peter Fritzson, and Kent Engstrom. Implementation of the real-
time functional language Erlang on a massively parallel platform, with applications
to telecommunications services. In High-Performance Computing and Networking,
Milan, Italy, 1995.

