

 Peng Tang
 Candidate

 Computer Science
 Department

 This thesis is approved, and it is acceptable in quality

and form for publication on microfilm:

 Approved by the Thesis Committee:

 , Chairperson

 Accepted:

 Dean, Graduate School

 Date

 APPLICATION OF NON-PARAMETRIC TEXTURE SYNTHESIS TO

 IMAGE INPAINTING

 BY

 PENG TANG

 B.S., Computer Science, Tianjin Institute of Textile Science and Technology,

1993

 M. S., Mathematics, Nankai University, 1999

 THESIS

 Submitted in Partial Fulfillment of the
 Requirements for the Degree of

 Master of Science
 Computer Science

 The University of New Mexico
 Albuquerque, New Mexico

 May, 2004

 iii

Acknowledgements

Working on this thesis, I would like to extend my truly appreciation to the following

persons for their great contributions of suggestions, ideas, corrections and explanations:

Lance Williams, Associate Professor of Computer Science, the University of New

Mexico. For his endeavors as major professor, valuable discussions and ideas. I really

appreciate that he spent a lot of holiday time to talk with me and help to correct my

mistakes.

Joel Castellanos, Master’s student, the Department of Computer Science, the University

of New Mexico, Albuquerque, New Mexico. For his explanation of the Castellanos-

Williams algorithm, and other discussions.

 APPLICATION OF NON-PARAMETRIC TEXTURE SYNTHESIS TO

 IMAGE INPAINTING

 BY

 PENG TANG

 ABSTRACT OF THESIS

 Submitted in Partial Fulfillment of the
 Requirements for the Degree of

 Master of Science
 Computer Science

 The University of New Mexico
 Albuquerque, New Mexico

 May, 2004

v

Application of Non-parametric Texture Synthesis to Image

Inpainting

by

Peng Tang

B.S., Computer Science, Tianjin Institute of Textile Science and Technology, 1993

M. S., Mathematics, Nankai University, 1999

M.S. Computer Science, University of New Mexico, Albuquerque, New Mexico 2004

ABSTRACT

A non-parametric texture synthesis technique is applied to the problem of digital image

inpainting. The technique described primarily handles homogeneous texture images.

Based on the Castellanos-Williams algorithm, the method implicitly assumes a Markov

random field model for textured image regions. The non-parametric sampling procedure

for image inpainting utilizes a series of binary mask Gaussian Pyramid level textures.

Texture is synthesized in a coarse-to-fine order. The laplacian pyramid transform is used

in the implementation. Resolution hierarchy plays a critical role in the analysis, synthesis

and sampling process for efficiency and flexibility. The degree of randomness is crucial

in the sampling routine. Here, the sampling process randomly and uniquely chooses a

pixel from the initial synthesis guess level, combining with the sampling with-

replacement policy. Therefore, the sampling procedure generates a distribution that is

very similar to the sample by running more than one time and taking into account the

vi

neighborhood adjusting factor k. The combination of these contributes achievements to

fulfill the best performance of image inpainting.

TABLE OF CONTENTS

LIST OF FIGURES…………………………………………………………………… viii
LIST OF TABLES………….……………………………………………………….…..ix
Chapter 1 Introduction…………………………………………………………………..1

1.1 Texture……………………………………………………………………………1
1.2 Texture Synthesis…………………………………………………………………2
1.3 Inpainting…………………………………………………………………………3
1.4 Markov Random Fields – Non-parametric Sampling Methods…………..………6

Chapter 2 Related Work………………………………………..………………………..8
2.1 Efros and Leung ………….………………………………………………………8
2.2 Wei and Levoy ………….………………………………………………………..9
2.3 Inpainting and Texture Synthesis………………………………………………...10

Chapter 3 Castellanos-Williams ………………………………………………………..12
3.1 Overview………………………………………………………………………….12
3.2 Coarse-to-fine Information Flow…………………………………………………13

Chapter 4 Modification of Castellanos-Williams Algorithm…..………………..………18
4.1 Analysis…………………………………………………………………………...18
4.2 Details…………………………………………………………………….………20

4.2.1 Input Texture Pre-processing…………………………………………….…21
4.2.2 Analysis and Synthesis…………………………………………………......22
4.2.3 Neighborhood Matching Details……………………………………………24
4.2.4 Coarse-to-fine Information Flow with Mask Pyramid……………………...27
4.2.5 Algorithm…………………………………………………………………...29

Chapter 5 Results………………………………………..…………..……………….….34
Chapter 6 Complexity Analysis…………………………………………………………43
Chapter 7 Main problems and Future Work…..………………………..……………….46
Chapter 8 Conclusion……………………………….……………………..……………48
REFERENCES…………………………………………………………………………..49

vii

LIST OF FIGURES

Figure 1. Texture examples………………………………………………………………..1

Figure 2. Texture synthesis examples……………………………………………………..3

Figure 3. Texture inpainting examples……………………………………………………5

Figure 4. Texture analysis and synthesis………………………………………………...16

Figure 5. Example of Gaussian and Laplacian pyramid levels………………….……….23

Figure 6. Coarse-to-fine information flow with mask pyramid …..………….………….28

Figure 7. Inpainting example..….………………………………………….…………….35

Figure 8. Inpainting example…………………………………………………….………35

Figure 9. Inpainting example……………………………………………….……………36

Figure 10. Not so good inpainting example..…………………………….……………....37

Figure 11. Inpainting examples……….…………………………………….…………....37

Figure 12. Inpainting examples….………………………………………….……………38

Figure 13. Inpainting examples.………………………………………….………………39

Figure 14. Inpainting examples.………………………………….………………………40

Figure 15. Inpainting with different textures example…..……………….………………41

Figure 16. Hole spanning two different textures example ………………………………41

Figure 17. Barcloud low and high frequency inpainting comparison ……..….…………42

viii

LIST OF TABLES

Table 1. 7×7 Neighborhood Illustration…………………………………………………20

Table 2. Texture synthesis algorithm…………………………………………………….31

Table 3. Sampling algorithm……………………………………………………………..33

Table 4. 128×128 sample textures running time illustration…………………………….44

Table 5. 256×256 sample textures running time illustration…………………………….44

ix

1

Chapter 1:

Introduction

1.1 Texture

Texture is an attribute of an image, which is characteristic of appearance of a region with

a statistically ergodic distribution. Textures can have a wide variety of characteristics,

whether spatially homogeneous, or not, and may contain elements repeated either

deterministically or randomly. From [1], we know that “there are three principal

approaches used to describe texture: statistical, structural and spectral. Typically, the

properties of a texture are computed from the grey level histogram of the texture region.”

Sometimes, the visual appearance of the surface of a fabric or a beautiful painting

exhibits an essential texture quality. Some textures are illustrated in Figure 1.

 (a) (b) (c) (d)

Figure 1: (a) A clover texture can be characterized statistically. (b) A real dinosaur skin

example. (c) Texture of a piece of granite. (d) Texture formed by random arrangement of

beans, which is isotropic texture at all scales.

2

1.2 Texture Synthesis

Texture synthesis is the construction of a new image that is different from the original,

but it has the same visual appearance as the original. Texture synthesis is another way to

create textures distinct hand drawings and images from cameras. Also, synthetic textures

can be made of arbitrary size, and visual repetition is avoided. In both computer vision

and graphics, texture synthesis has been being an active research field and is involved

with many image-processing based applications. Image inpainting is one important

application which has used texture synthesis techniques. Sometimes, inpainting has been

referred to as hole filling or foreground removal [2]. Other image based applications

include image and video compression and animation. Indeed, texture synthesis techniques

can be applied anywhere that requires description, analysis and synthesis of an image

where the pixels have an ergodic distribution. Figure 2 shows some examples of texture

synthesis results from different approaches.

3

(a) (b)

 (c) (d)

Figure 2. (a) An artifical sample image. (b) Efros and Leung’s synthesized result. (c)

Castellanos-Williams result on surface of a sphere. (d) Our approach synthesized result.

1.3 Inpainting

There is no standard definition for image inpainting. Roughly speaking, the purpose of

image inpainting is to remove an object from an image. The key point is how to make the

image appear like the object never existed. In the literature, another application of image

inpainting is described to repair a damaged picture. That means, for a scratched image,

how can we restore so that it exhibits its undamaged appearance? Although, manual

photographic restoration is an old topic. Digital image inpainting is a technique that

4

restores an image by smoothly filling a hole in a purely automatic fashion. The basic

inpainting method involves removing some foreground object or creating a hole in an

image. Texture synthesis procedure will then use the neighborhood or background texture

to fill in the hole. After synthesis, the picture exhibits its synthesized texture and the hole

should be undiscernable. The synthesized texture used to fill the hole comes from the

neighborhood or background area that surrounds the hole or damaged area. Figure 3

shows some inpainting examples. In figure 3, (a) and (b) are an example for

homogeneous image with hole filling; (c) and (d) are an example for non-homogeneous

texture and the object spans different homogeneous regions; (e) and (f) are an example

for non-homogeneous texture and the object locates inside one homogeneous region.

5

 (a) (b)

(c) (d)

 (e) (f)
Figure 3: (a) and (b) are a real dinosaur skin image. (c) and (d) are inpainting examples in

[7]. (e) and (f) are inapinting examples in [10].

6

1.4 Markov Random Fields – Non-parametric Sampling Methods

Markov Random Fields (MRF) are two-dimensional generalizations of Markov chains.

They are used as texture models in many texture synthesis algorithms, which generate

textures by a sampling process. MRFs have been shown to be a good approximation for a

lot of texture types. Markov random fields capture the spatial structure of a texture by

combining generic natural knowledge with a flexible formalism for specifying higher

order interactions. Markov random fields models have been successfully used in many

fundamental problems of image analysis, texture synthesis, and computer vision. The

assumption underlying Markov random fields is that the probability distribution of spatial

structure depends on the neighborhoods but is independent of the other parts of the

image.

Texture synthesis can be accomplished by a non-parametric sampling process based on

neighborhood search method. This method takes a given input sample image and grows a

new texture by synthesizing one pixel at a time. In order to determine an output synthesis

pixel value, the neighborhood of a synthesis pixel is compared with all neighborhoods of

the input sample image. The most similar pixel is then assigned to the output synthesis

pixel. Here, the neighborhood size is very important to the algorithm’s performance. In

order to synthesize the most similar texture possible, the neighborhood size should be

large enough to model the local texture information exhibited in the input sample image.

However, increasing the neighborhood size causes the algorithm to take more and more

time to complete the synthesis so that the process becomes slow. In order to achieve a

7

compromise, a multi-resolution synthesis method is presented, where texture structure

can be captured using relatively small neighborhoods. Multi-resolution synthesis schemes

are thus faster than single resolution schemes.

8

Chapter 2:

Related Work

2.1 Efros and Leung

In paper [2], the authors presented a non-parametric sampling technique for texture

synthesis, “The texture synthesis process grows a new image outwards from an initial

seed, one pixel at a time. A Markov random field model is assumed, ….., the method

aims at preserving as much local structure as possible and produces good results for a

wide variety of synthetic and real-world textures”[11]. Their method is a simple and

efficient texture synthesis method that was based on Markov random fields. In the

algorithm, a single pixel p is chosen as the unit of synthesis. Previously synthesized

pixels in a square window around p are used as the context. In order to proceed with

synthesis, the probability table for the distribution of p conditioned on all possible

contexts is needed.

In their work, textures are modeled as a Markov Random Field (MRF). ”They assume

that the probability distribution of brightness values for a pixel given the brightness

values of its spatial neighborhood is independent of the rest of the image. The

neighborhood of a pixel is modeled as a square window around that pixel. The size of the

window is a free parameter that specifies how stochastic the user believes this texture to

be.”[11]. In our implementation, the neighborhood of a pixel to be synthesized is also

modeled as a square window around the pixel. The values of the pixels are updated one

9

by one. The synthesized pixels are chosen randomly and the size of the neighborhood of a

pixel is the only parameter that controls the randomness of the synthesized texture.

2.2 Wei and Levoy

In an extension to the Efros and Leung algorithm, Wei and Levoy developed a multi-

resolution neighborhood search based algorithm in [4]. Texture is synthesized in a

coarse-to-fine manner. The input consists of an example texture and a random noise

image. The process modifies the noise image to make it look like the given example

image. By using a search algorithm for best neighborhood match and a multi-level

resolution pyramid, the procedure can synthesize as much texture as is needed. The

initialization is the first step, then the synthesis process uses two different matching

procedures for each Gaussian pyramid level:

1. Initialization: To start, level k of the synthetic Gaussian pyramid is populated with

randomly chosen pixel values from level k of the analysis Gaussian pyramid. This

initialization step is the source of randomness in the output texture. The other steps

focus on the transformation of the output texture into something which resembles

the input texture.

2. Multi-level neighborhood matching: The multi-level synthesis transforms each

level from lower to higher resolutions, “such that each higher resolution level is

constructed from the already synthesized lower resolution levels.” [3]. For the first

matching step, each pixel of the synthetic Gaussian level is visited in random order,

like [2]. By means of an exhaustive search algorithm, the pixel with the most

10

similar neighborhood pixels is used to replace the pixel in the level being

synthesized. However, in order to propagate information from coarse-to-fine scales,

the first step neighborhood takes two levels of the Gaussian pyramid, it uses

neighborhood pixels including level k and level k-1.

3. Single-level neighborhood matching: This synthesis process is to make sure the

synthesized pixel retains as much local texture information as possible. The final

value of the synthesis output pixel at level k is determined by repeating the non-

parametric sampling procedure used in the first step. However, different than step 2

whose purpose is to project texture information from coarse-to-fine scales, the

neighborhood that is used in step 3 consists only of pixels at level k in the analysis

Gaussian pyramid.

2.3 Inpainting and Texture Synthesis

The goal of image inpainting is to fill a hole in an image so that the hole is undetectable

by observers. In the literature, there are three kinds of works related to digital inpainting.

First is the restoration of films [8], second is related to texture synthesis [9], the last is

related to disocclusion [10]. For the first technique, it cannot be applied to still images or

to films where the regions to be inpainted span multiple frames. For the third technique,

[10] showed that the algorithm can be viewed as solving a set of differential equations.

“The fill-in is done in such a way that isophote lines arriving at the regions’ boundaries

are completed inside. …, no limitations are imposed on the topology of the region to be

inpainted.” [10].

11

For the second technique, there are many different ways to do inpainting with texture

synthesis. For example, [9] combines frequency and spatial domain information in order

to fill a given region with a chosen texture. Inpainting with texture synthesis can roughly

be separated into two parts: Computing the information of pixels in relation to the

neighboring pixels; finding the optimal pixel with matched neighbors by estimating the

distance measure. Traditional inpainting algorithm is still useful since it performs quite

well for small scratches and runs relatively fast. The texture synthesis method brings up

some extra overhead and runs in time proportional to the size of the image.

In recent years, pyramid-based multi-resolution texture synthesis has been adopted and

used in many texture syntheses and inpainting algorithms. The Laplacian pyramid is the

one that has been used widely, e.g., [4], [5]. A detailed explanation of the Laplacian

pyramid transform will be presented in Chapter 4. Also, the Castellanos-Williams

algorithm used in this thesis will be explained in detail in the next chapter. Finally, the

similarities and differences between our method and Castellanos-Williams will also be

discussed there.

12

Chapter 3:

Castellanos-Williams

3.1 Overview

Our work is mainly based on the Castellanos-Williams algorithm, so in this part, I will

give a detailed explanation of the Castellanos-Williams method as it relates to our work.

The Castellanos-Williams algorithm implemented in [11] focuses on to synthesis texture

from rectangular to surface and assumes the sample textures are isotropic, so they do the

triangulation on the sample texture in order to have a good mapping from the rectangular

sample to triangular grids on the surface. In our implementation, the sample texture will

be synthesized from rectangular to rectangular shape and we do not assume the sample

texture is isotropic, so triangulation does not need in our method.

Although, the Castellanos-Williams algorithm for texture synthesis on surfaces is

inspired by several multi-resolution methods [11], synthesis texture image by using non-

parametric procedure to sample an implicitly defined Markov Random Field, the main

inspiration came from [4]. [2] also influenced to some extent. However, Castellanos-

Williams technique differs from other methods in some significant ways: The

Castellanos-Williams method generates texture coarse-to-fine in a more efficient way by

using a Laplacian pyramid transform; the non-parametric sampling procedure in [4] has

been replaced with a routine which better preserves the first-order statistics of the input

texture. Finally, they resample the input texture using a triangulated grid so that the

13

geometry more closely resembles the subdivision surface on which the texture will be

synthesized. This also simplifies the optimal pixel searching process of the texture

synthesis procedure.

3.2 Coarse-to-fine Information Flow

Unlike [4] who calculate just the Gaussian pyramid pixels of the target texture, the

Castellanos-Williams method computes both the Gaussian and Laplacian pyramid pixels.

Unlike the Gaussian pyramid alone, the Laplacian pyramid can be inverted. That means,

the original function can be reconstructed from the Laplacian pyramid and a single

residual Gaussian value. In the Castellanos-Williams algorithm, they synthesize both

Gaussian and Laplacian pyramids in order to propagate information from coarse-to-fine

scales. The biggest difference between Castellanos-Williams and Wei-Levoy is that the

Castellanos-Williams algorithm returns both Gaussian and Laplacian pyramid pixels as

the synthesis process proceeds. Every time, one optimal Gaussian pixel is copied to the

synthesis side, at the same time the four children of the corresponding Laplacian pyramid

are copied simultaneously during the synthesis process.

In the Castellanos-Williams algorithm, the Laplacian pyramid transform plays an

important role. We know for each Gaussian pyramid level, there is a corresponding

Laplacian pyramid level which has twice the resolution. Suppose the Laplacian pyramid

transform transforms the target input image into m levels, the first level is 1, the second is

14

2, and this continue until level m. We call the original Gaussian and Laplacian levels

from the input texture the analysis side, the intermediate synthesis texture is the pre-

sampling Gaussian level, and the post sampling Gaussian and Laplacian is the post-

sampling image. The pre-sampling and post-sampling belong to synthesis side. The

Castellanos-Williams algorithm first takes the coarsest Gaussian level k and uses it to

initialize the initial pre-sampling synthesis level pixels by randomly choosing pixels from

the input Gaussian level k. Then the choosy sampling procedure uses this Gaussian level

and the initial pre-sampling synthesis level texture to do the exhaustive neighborhood

matching process. Each time an optimal matched pixel is found, the RGB values of this

pixel is copied to the post-sampling synthesis Gaussian level and simultaneously the four

children of Laplacian level k-1 are copied to the corresponding Laplacian pyramid level.

Finally, the algorithm will project the post-sampling Gaussian level k, and then add the

projected Gaussian level and the corresponding Laplacian level. This becomes the next

pre-sampling synthesis level texture, and is a better approximation to the target texture

than the texture at the previous level. The algorithm repeats this procedure until it reaches

the finest level. After the algorithm reaches the finest level, the method will do the

sampling process by using the input texture as the analysis image and then sampling the

first pre-sampling synthesis level texture, because there is no Laplacian pyramid pixels to

be copied. When this step is done, the final output image will be the Castellanos-

Williams texture synthesis output texture and will have the appearance of the input

sample texture. During the whole algorithm, the exhaustive neighborhood matching will

be very time consuming, the implementation described in [11] does all levels of synthesis

in one whole program code. In my implementation, I have separated all levels of

15

synthesis from one whole program code into level-based program code. For each level,

the code runs independently, this strategy enhances the performance.

The Castellanos-Williams algorithm only randomizes the coarsest pre-sampling

resolution synthesis with random values from the coarsest analysis Gaussian level, this

randomization is transported through the entire algorithm to the finest resolution level. In

contrast, [4] randomizes each level according to the input sample texture. Figure 4

demonstrates an example of Castellanos-Williams Texture Synthesis technique operating

on a rectangular texture region.

16

 Analysis Synthesis

 Gaussian Laplacian Pre-sampling Post-sampling Gaussian and Laplacian

Coarsest

Level

Finest

Level

Figure 4: Texture analysis and synthesis. From top to bottom, the level from k to 1, the

texture information proceeds from coarse-to-fine. In the first step, the pre-sampling

texture is initialized with randomly chosen pixels from the coarsest Gaussian level. On

the synthesis side, subsequent steps will use the previous post-sampling Gaussian and

Laplacian level textures to generate the pre-sampling level texture for each step. The final

17

step use the original input as the analysis texture, and there is no Laplacian level in this

step. The output will be the final texture synthesis result.

18

Chapter 4:

Modification of Castellanos-Williams Algorithm

4.1 Analysis

In the Castellanos-Williams algorithm, the main intention is to synthesize texture from

raster image to a surface represented as a triangulation, so they have changed the

traditional Laplacian pyramid transform and made it suitable for transforming surface.

Also, when doing the neighborhood matching, they consider six rotational phases of the

input sample each rotated 60 degree relative to the previous. Finally, the Castellanos-

Williams method maps the square input pixels to triangular faces on surface. In addition,

the Castellanos-Williams method can synthesize a bigger image than input sample

because they use a scaling factor to adjust the synthesis texture scale corresponding to the

input sample.

In our approach, the goal is to do inpainting using texture synthesis process. The mapping

is from square input pixels to square output pixels. During the process, the hole in the

texture will be filled in using texture from the surrounding region. In order to finish the

inpainting process, the Castelanos-Williams synthesis technique plays an important role.

However, inpainting is different than pure texture synthesis. In particular, we need to

preserve the image size, so a scale factor isn’t needed. Also, for the neighborhood

matching procedure, in the Castellanos-Williams implementation, they do “wild-cards”

19

for boundary neighborhood matches. Basically, they assume that if the target pixel

doesn’t have a full complement of neighborhood pixels, they use a fixed value to describe

the missing neighborhood pixels on both the analysis and the synthesis sides, and when

calculating the distance from the neighborhood, since on both sides they have the same

pixel values for the missing pixels, the difference will be zero during the distance

computation; the weighting process will be based on just the existing neighbors not the

missing neighbors. Finally, the rotation step in the Castellanos-Williams implementation

is not used in the inpainting algorithm since we do not assume that the sample texture is

isotropic.

For the Castellanos-Williams implementation, the triangulation increases the

computational workload considerably. The 2-distant neighborhood is approximately 6×6

neighborhood rectangular faces in size for the coarsest level Laplacian pyramid transform

level and the sample is typically 8×8 in size. In inpainting, the neighborhood size is 7×7,

so for a color image with 3 RGB values, one pixel has 48 neighbors with 3 RGB values.

Consequently, there will be a 48(3)=144 dimensional neighborhood vector. The error

distance computation will calculate the Euclidean distance between the two 144

dimensional neighborhood vectors of the analysis and synthesis target pixels. The 7×7

neighborhood showing the Euclidean distance from the center is as follows:

20

35 (3√2) 34 (√13) 33 (√10) 32 (3) 31 (√10) 30 (√13) 29 (3√2)

36 (√13) 15 (2√2) 14 (√5) 13 (2) 12 (√5) 11 (2√2) 28 (√13)

37 (√10) 16 (√5) 3 (√2) 2 (1) 1 (√2) 10 (√5) 27 (√10)

38 (3) 17 (2) 4 (1) * 0 (1) 9 (2) 26 (3)

39 (√10) 18 (√5) 5 (√2) 6 (1) 7 (√2) 8 (√5) 25 (√10)

40 (√13) 19 (2√2) 20 (√5) 21 (2) 22 (√5) 23 (2√2) 24 (√13)

41 (3√2) 42 (√13) 43 (√10) 44 (3) 45 (√10) 46 (√13) 47 (3√2)

Table 1: 7×7 Neighborhood Illustration

The digital number from 0 to 47 is the 7×7 neighborhood order. The number inside the

bracket shows the basic Euclidean distance d between the neighborhood pixel and the

center synthesis pixel. These distances are used for Gaussian weighting of distance. Later,

we will show where and how to use this distance parameter.

4.2 Details

In addition above discussion to the texture synthesis to image inpainting, there are

additional steps to apply which need to be done. The hole is represented by the value zero.

Consequently, we need to do a gray scale transformation of the image to take intensity

from the range 0-255 to the range 1-255. We use the image processing software package

21

called Gimp to remove the foreground object, and fill the hole grey scale value with zeros.

The mask image is a binary image with two colors, zero denotes black pixel values and

255 denotes white pixel values. The hole is black with pixel value zeros. Outside the hole

is white with pixel value 255s. The Laplacian pyramid transform is done on the mask

binary image as well as on the input texture. Finally, from the coarsest level to the finest

level, when doing texture synthesis at each step of the pixel matching, the value of the

mask pyramid acts like a switch, deciding whether a pixel can be picked as the optimal

matching pixel and be copied into the texture being synthesized.

 4.2.1 Input Texture Pre-processing

For texture synthesis to be applied to inpainting, the first difficulty is that knowing how

to detect whether a pixel in the sample image is a pixel inside or outside the hole. We

know that the goal of texture synthesis by neighborhood matching is to synthesize a new

texture from a sample input image. For synthesis only, you don’t need to worry about

whether or not to use a pixel in the sample image. The algorithm will automatically pick

the pixel using the choosy sampling process by searching through the whole sample

texture. By choosing the synthesis pixels from the whole sample, the output image will

resemble the original input texture. However, an inpainting algorithm can not choose

pixels that are inside the hole of the original texture. The goal of the algorithm is to

choose pixels outside the hole of the sample texture as samples and fill in the hole with a

22

texture so that the resulting image looks intact. For this reason, the mask pyramid is

applied, and the sample texture needs to be processed. The preprocessing is simple. For a

given gray scale sample texture, the pixel values are distributed between 0 and 255, the

gray scale transformation is to multiply each RGB value with a fraction (254/255), then

adding one to the result. After this transformation, the RGB values of the sample texture

will be bounded within 1 to 255. Mathematically, if we suppose that the pixel value of the

sample texture is g(x), after the preprocessing pixel value is f(x), then:

Using this formula, the input image has only been slightly changed.

4.2.2 Analysis and Synthesis

Pyramid-based texture analysis and synthesis techniques have been introduced and used

in many image processing applications, e.g., [4, 5, 11,]. Typically, image or texture is

decomposed into a set of subbands. The subband transform makes an image to a

particular pyramid type, which defines the characteristic of the texture. The subbands

are calculated by convolving and downsampling by a factor of two. This produces a

series of images with different size, which are called an image pyramid.

The Laplacian pyramid transform can be the basis for an effective pyramid based texture

synthesis method. There are two basic operations: reduce and project. The reduce

operation uses a low pass filter. The image is convolved with a Gaussian kernel and then

23

subsampled by a factor of two in the width and height dimensions. The project operation

upsamples the image with a factor two in each dimension. A full level of the pyramid

consists of two images, Gk (a low pass image) and Lk (a high pass image):

Tle Laplacian pyramid transform is a linear and reversible transformation. The upper

level Gk-1 image can be reconstructed from Gk and Lk:

So the original image can be constructed as:

The above Laplacian pyramid transform representations Gk and Lk are also described as

Gaussian pyramid level and Laplacian pyramid level. Figure 5 is an example of Gaussian

and Laplacian pyramid levels of Laplacian pyramid transform.

Gaussian

Laplacian

Figure 5: Example of Gaussian and Laplacian pyramid levels

24

4.2.3 Neighborhood Matching Details

Texture is an important attribute of images, especially for computer graphics, it increases

the visual realism of images. Texture synthesis is a useful way to produce a texture

image of an arbitrary size. Neighborhood matching is the crucial part in texture synthesis.

The first step for neighborhood matching is to define the size of the neighborhood. In our

implementation, the 7×7 neighborhood is defined as indicated by the pattern in Table 1.

The spiral ordering from 0 to 47 around the central pixel enumerates the 48 neighbors for

a simple pixel in the image. The basic Euclidean distance of a neighbor pixel is

calculated according the Euclidean distance computation formula and the pixel’s

coordinates in the image representation, which assumes two adjacent pixels’ Euclidean

distance is unit. So if P1(x,y) and P2(u,v) are two points in an image, the basic Euclidean

distance will be as follows:

All the basic Euclidean distances of the 48 neighbors are calculated and shown in Table

1.

As shown in Table 1, a 7×7 neighborhood is comprised of 48 neighborhood pixels. For a

color image, each pixel has 3 RGB values. Consequently, there will be 3(48) = 144

values per neighborhood. If using an array to express these values, it can be treated as a

144 dimensional vector. The localized texture is captured by weighting the error distance

25

through a Gaussian function between the two vectors of analysis side and synthesis side

neighborhood. The neighborhood weighting scale factor is defined as:

where, di is the basic Euclidean distance, σ is the Gaussian function parameter, in our

implementation, σ is 4.0. The function of the weighting scale factor is to weight the 48

neighbors of the two pixels between analysis and synthesis pyramid level.

During the implementation of inpainting, in order to avoid generating seam on the

boundary of the hole, there is another adjusting factor k, which is used to adjust the

neighborhood error distance according to whether a neighborhood pixel is located inside

the hole or outside the hole. When computing the error distance of the two vectors, first

we need to determine the neighborhood pixel position by using the binary mask pyramid

image that has the same size as the analysis level image. If a random sampling pixel in

the synthesis step is chosen, the coordinates of the pixel are transmitted to the

ErrorDistance() procedure. The procedure uses the corresponding mask level image to

compare the neighborhood pixels’ values in the coordinates with 255. If the

neighborhood pixel values are not 255, it is inside the hole. If the pixel values are 255, it

is outside the hole. After getting the neighborhood pixel position, it works as a switch. If

the pixel is inside the hole, the adjusting factor one is used during the Euclidean error

distance computation; if it is outside the hole, the adjusting factor k is used during the

Euclidean error distance computation corresponding to each dimension within the 144

dimensional vector. The Euclidean error distance computation between the two vectors is

26

to make subtraction for the corresponding pixel RGB values, then squares it and sums all

the results and does square root on the final result. The working equation is as follows:

ai ∈ {1, k} is an indicator variable. If a pixel is inside of the hole, ai takes value 1; if a

pixel is outside of the hole, ai takes value k. It is decided by the neighbor position in the

mask level image whether a pixel is inside or outside of the hole. XAi denotes the i-th

coordinate of the analysis neighborhood vector; XSi denotes the i-th coordinate of the

synthesis neighborhood vector. And, wi is the neighborhood weighting scale factor as

defined in previous equation. By using the adjusting factor k, we have found there is a big

improvement on the synthesis texture of inpainting. This method makes the boundary of

the hole to be visual appearance seamless in a significant way.

The sampling routine calculates the final distance of the two vectors by multiplying a

factor of 1.005(C[j]-Cmin), here the base is different from the Castellanos-Williams’s

method. c[j] represents the number of times that pixel j in the analysis Gaussian

pyramid has been selected and copied to the synthesis post-sampling pyramid level. cmin

represents the minimum number of times that any pixel in the analysis Gaussian pyramid

level has been selected. The pixel j of the target Gaussian pyramid level is selected such

that the final distance is a minimum by exhaustive searching through traversal every pixel

in the given Gaussian pyramid level. The random order is performed in the sampling

procedure, which plays an efficient sampling process. In order to enhance the algorithm

performance, we have been running the random sampling procedure with different times

27

and different k values. Theoretically, the more times running for the sampling, the better

the results for inpainting. In our practice, many results are performed by running 4 times

and k equals 8 under the combination of σ equals 4.0 and cmin base is 1.005. However, the

time consuming is exponential increasing with the texture size increasing.

4.2.4 Coarse-to-fine Information Flow with Mask Pyramid

For inpainting implementation, the mask pyramid plays an important role on the texture

synthesis process. The mask pyramid is a binary Gaussian pyramid level, all of the pixel

values are 0 or 255. Zeros denote the black pixels that consist into the hole. 255s denote

the white pixels that consist into the outside part of the hole. In order to computer the

error distance of the two vectors, we need to determine the neighborhood pixel position

by using the binary mask pyramid level image. If a random sampling pixel in the

synthesis step is chosen, the coordinates of the pixel are transmitted to the

ErrorDistance() procedure. The procedure uses the corresponding mask level image to

compare the neighborhood pixels’ values in the coordinates with 255. If the

neighborhood pixel values are not 255, it is inside the hole. If the pixel values are 255, it

is outside the hole. If the pixel is inside the hole, the adjusting factor one is used during

the Euclidean error distance computation; if it is outside the hole, the adjusting factor k is

used. The Euclidean error distance computation between the two vectors is according to

the Errordistance equation. Figure 6 is an example of the coarse-to-fine information

flow with mask pyramid level.

28

 Analysis Mask Synthesis

 Gaussian Laplacian pyramid Pre-sampling Post-sampling Gaussian and Laplacian

Coarsest

Level

Finest

Level

Figure 6: Coarse-to-fine information flow with mask pyramid

29

4.2.5 Algorithms

All algorithms’ descriptions of the above texture synthesis technique to inpainting are

exhibited as follows:

Readppm(): An algorithm that reads a PPM ASCII image information and stores pixel

values into a data file without the PPM head structure.

Makeoriginalmask(): An algorithm that calculates the original mask image according to

the input image data file information.

Adjust(): An algorithm that adjusts the original input texture according to the image

preprocessing requirements.

Reduce(): An algorithm that accomplishes the Laplacian pyramid transform level by

level by acting on the input texture data file and the original mask file with Gaussian

convolution.

Project(): An algorithm that executes upsampling and Gaussian convolution for the

given Gaussian pyramid level image.

Laplacian(): An algorithm that does transaction for generating Laplacian pyramid level

image.

DoConvolution(): A function that calculates the Gaussian convolution for given

Gaussian kernel.

Swap_indexes() and Random_perm(): Functions that generate the random order

synthesis pixels.

Cminimum(): A function that finds the minimum number of a pixel in the given analysis

Gaussian pyramid level has been selected and used in the post-sampling texture.

30

ErrorDistance(): A function that computes the error distance of the two neighborhood

vectors with the neighborhood weighting and adjusting factors.

NeighborFind(): A functions that finds the neighborhood pixels of the analysis side.

Sampling(): This is the main procedure of the texture synthesis algorithm, which finds

the optimal pixels for filling in the hole.

The formalizations of texture synthesis and sampling algorithms are shown in the

following tables: Table 2 and Table 3. In our implementation, the whole texture

synthesis algorithm has been divided into five (for 128×128 image) or six (for 256×256

image) or seven (for 512×512 image) individual steps. With the increasing of the input

texture size, the later steps will take more time to finish sampling process. Among all the

synthesis steps, the first step is to do synthesis with the coarsest level texture, and

randomly choosing pixels from the coarsest Gaussian level texture to fill in the initial

pre-sampling level texture. The sampling process uses the coarsest Gaussian level as

analysis input texture and the outputs are the post-sampling Gaussian and Laplacian

level textures. The last step is to finish the final synthesis process, which uses the

original input texture as the analysis input and the previous step output as the pre-

sampling texture, there is no Laplacian level image in this step. The inputs of the

intermediate steps are the corresponding Gaussian and Laplacian level image on analysis

side and the pre-sampling level texture from the previous step.

31

Texture synthesis algorithm pseudocode summary.

TextureSynthesis(I0)

Begin

 Level ← log2(size(I0))

 GM0 ← MakeOriginalMask(I0)

 For i = 0 to Level do

 〈 GAi, LAi〉 ← LaplacianPyramidTransform(I0)

 GMi ← LaplacianPyramidTransform(GM0)

 End

 GGlevel ← Random(GAlevel)

 For j = Level to 0 do

 〈 GSj, LSj〉 ← Sampling(GAj, LAj-1, GGj, GMj)

 GGj-1 ← Project(GSj) + LSj-1

 End

 return(GS0)

End

Table 2: Texture synthesis algorithm

32

Sampling algorithm pseudocode summary

Sampling(GA, LA, GGk, GM)

Begin

 Cmin ← MAX_INT

 MinimumDistance ← MAX_FLOAT

 Sampling_num ← 0

 While (Sampling_num < 4) do

 For i = 1 to size(GA) do

 Cmin ← Cminimum(c[])

 RandomRow = Random(Height(GA))

 RandomCol = Random(Width(GA))

 ΩS ← NeighborFind(GGk, RandomRow, RandomCol)

 For j=1 to size(GA) do

 If j is not in hole determine by using GM Then

 ΩA ← NeighborFind(GA, j)

 d ← ErrorDistance(ΩA, ΩS)1.005(c[j]-Cmin)

 If d < MinimumDistance Then

 Optimal ← j

 MinimumDistance ← d

 End

 c[Optimal] ← c[Optimal] + 1

 End

 GS (RandomRow, RandomCol) ← GA(Optimal)

33

 LS (RandomRow*2, RandomCol*2) ← LA(Optimal*2)

 End

 End

 End While

 GG ← Project(GS) + LS

 Return GG

End

Table 3: Sampling algorithm

Notations:

Symbol Meaning
I0 original input texture sample
GA analysis Gaussian pyramid level
LA analysis Laplacian pyramid level
GG pre-sampling synthesis pyramid level
GM mask pyramid level
ΩS synthesis neighborhood vector
ΩA analysis neighborhood vector
GS post-sampling Gaussian pyramid level
LS post-sampling Laplacian pyramid level
c[] array for storing the number of pixels have been selected

RandomRow the row number of the synthesis pixel
RandomCol the column number of the synthesis pixel

Optimal the best match pixel position
d the Euclidean distance of the two neighborhood vectors

size() giving the total number of pixels of an image
Cmin the minimum number of times of a pixel has been selected

34

Chapter 5:

Results

All of the results shown in this chapter use four pyramid levels of resolution for 128×128

samples, five levels of resolution for 256×256 samples. The 7×7 neighborhoods are used

in the sampling process at all levels. Some of the samples are provided by Joel

Castellanos [11]. Some of the samples are downloaded from NASA’s web site [13].

Some of them are taken from Peterson Multimedia Guides: North American Birds. Here I

want to thank all of the contributors for distributing the images that help me a lot.

In our implementations, some holes are rectangular shapes that were taken on purpose.

Others are made according the natural objects geometry shape. Rectangular holes are

more difficult to do inpainting than the natural geometry holes because they often

generate seams on the boundary of the holes.

The sample presented in Figure 7 is a clover texture that has been purposely made a

rectangular hole, then the sampling process is used to fill in the hole with surrounding

texture information.

35

(a) (b) (c)

Figure 7: (a) Original sample texture. (b) Sample texture with hole. (c) Our inpainting

algorithm result.

Figure 8 is another clover texture with a rectangular shape hole and has been synthesized

by using surrounding pixels to fill in the hole.

(a) (b) (c)

Figure 8: (a) Original sample texture. (b) Sample texture with hole. (c) Our inpainting

algorithm result.

Figure 9 is a 256×256 texture of randomly arrangement beans, which is isotropic at all

scales. The hole is also a rectangular shape.

36

(a) (b)

 (c)

Figure 9: (a) Original sample texture. (b) Sample texture with hole. (c) Our inpainting

algorithm result.

The bar sample shown in Figure 10 is not good. In general, our method fails with such

textures. The algorithm has been trying to closely match the original, however the seam

on the boundary is clearly appearing. What we understand is that the sampling method is

37

too greedy and results in loosing the first-order statistics. For the boundary, we may need

other strategies to handle it. This will be a part of our future work.

(a) (b) (c)

Figure 10: (a) The original image. (b) The image with a hole. (c) Our synthesized result.

For the above results, the holes are rectangular shapes that can be made arbitrary inside

the image region. Followings are some examples that apply the algorithm to natural holes

for inpainting.

(a) (b) (c)

 (d) (e) (f)

Figure 11: (a) and (d) are the original textures. (b) and (e) are the hole textures. (c) and

(f) are the inpainting results.

38

There are some sample images downloaded from NASA’s web site, which are showing

the surface of Mars. We performed the inapinting algorithm on these images for

removing some objects such as rocks. The performance is good.

(a) (b) (c)

(d) (e) (f)

Figure 12

39

Figure 13

40

Figure 14

There is another example that compares Wei’s result [12] with our result in Figure 13.

For this example, the difficulty is that the original texture contains different texture

region, however, our approach still achieves a very good result.

41

 (a) Original sample image (b) Li-Yi Wei’s result

(c) Our hole image (d) Our inpainting result

Figure 15

Except above experimental results, following is an example that the hole spanning two

different texture regions, and the hole is filled in by just one part of the texture region

through our algorithm. For this kind of situation, texture segmentation is needed for

inpainting through our algorithm.

Figure 16: Hole spanning two different textures example.

42

For the result showed in Figure 10, we know that it is not good. In order to have a good

understanding what reason results into the negative inpainting result. We separate the

high and low frequency of the texture, so we have two different textures bar and cloud.

Through experiments, we find that the low frequency contained in the original image

contributes more on the negative result.

Figure 17: Barcloud low and high frequency inpainting comparison.

43

Chapter 6:

Complexity Analysis

For the performance, the most computationally work of the algorithm is the sampling

procedure. We usually use a neighborhood size 3×3 for the coarsest level sampling

procedure, and 7×7 for the rest of the levels sampling procedure. The Laplacian pyramid

transform transforms any texture to the coarsest level which is 8×8 size image. So for a

128×128 sample texture, there will have four levels of Laplacian pyramid, five levels of

Laplacian pyramid for a 256×256 sample texture, and six levels of Laplacian pyramid for

a 512×512 sample texture, and so on. During our experiments, we have separate each

level as an individual process. For different levels, the time complexity heavily depends

on the texture size in that level. Also, we know for inpainting the hole or real object size

will determine the pixels that are synthesized by using sampling procedure. So the hole or

object size is the realistic reason that determines the time complexity. However, through

our experiments, we find that for the same level, even for different textures, the running

time approximately tends to the same value. In order to have an precision demonstration

of the algorithm complexity, we take all the running examples and each level running

time. The coarsest level running time is approximately 2 seconds, the level adjacent to the

coarsest level running time is 3 seconds. Table 4 shows a detailed explanation for each

level running time with a 128×128 sample texture. Table 5 shows the running time for

256×256 sample textures.

44

Levels

4 2s 2s 1s 3s 3s 2s

3 2s 2s 2s 3s 3s 2s

2 18s 19s 16s 18s 22s 18s

1 328s 342s 254s 328s 381s 299s

0 5450s 5968s 4121s 4260s 7117s 4762s

Table 4: 128×128 sample textures running time illustration.

Levels

5 2s 3s 4s

4 2s 3s 5s

 3 18s 18s 22s

2 328s 295s 437s

1 6957s 4762s 10084s

0 56910s 23901s 79581s

Table 5: 256×256 sample texture running time illustration.

45

All of the results experiments above is implemented in Visual C++6.0, running on a

2.0GHz Intel Celeron CPU with 512MB RAM, and usually the CPU usage is about

95~96%.

46

Chapter 7:

Main problems and Future Work

There are many different techniques that use texture synthesis to do image inpainting for

computer-based image process. In our implementation, the most difficult thing is how to

deal with the seams. We have found that some inpainting results are good for some

samples, and some results are acceptable. However, there still have some textures are

very difficult for inpainting by using this non-parametric texture synthesis method. For

example, a texture that includes different texture regions and the hole spans different

regions. By using the k factor to adjust the neighborhood distance and sampling more

than one time have been proven to be a strong improvement on the inpainting

performance. But the seam is remaining as the biggest problem.

For our experiments, we mostly chose the homogeneous texture as our input image. From

above examples, we can see that many textures are homogeneous because we firstly think

this algorithm is not suitable for non-homogeneous texture. However, we finally found

this technique also does a great job on some non-homogeneous texture images as long as

the hole locates in one homogeneous region. This has been proven in Figure 12. But for a

general non-homogeneous texture image and the hole spans among different

homogeneous region remaining as an unsolved problem for our technique.

47

There is another problem related to the time complexity. Our algorithm is deeply time

 consuming with the increasing of the image size. For our practice, a 256X256 texture

will take more than one day to finish the final step synthesis on a 2.0GHz Celeron

Pentium IV with 512 MB RAM.

Our future work will focus on how to solve the seam problem and perform inpainting

technique to general non-homogeneous texture. The goal is to produce a seamless texture

synthesis technique to inpainting that works on general texture image. For this reason,

texture segmentation will be a part of the work. Also, speeding the algorithm is another

important part of the future work.

48

Chapter 8:

Conclusion

Texture is an important attribute of images. Texture synthesis has many applications in

image processing. Inpainting is an old and hot topic in image restoration or removing

unwanted objects from an image. The technique we demonstrated in this thesis is an

automatic non-parametric texture synthesis algorithm applying to image inpainting.

Comparing with other methods of inpainting, this technique works at a flexible position.

It could be applied to some situation that requires flexible and good performance for

small still texture inpainting.

From Efros and Leung, Wei and Levoy to Castellanos-Williams, they all have influence

on this thesis, although this work directly stands up on the Castellanos-Williams idea for

texture synthesis.

The extension of the application for this method is over more general categorized texture

image. Surely there will have more challenge on the future work.

49

REFERENCES

[1] http://www.hyperdictionary.com/dictionary/texture

[2] Alexei A. Efros and Thomas K. Leung. Texture Synthesis by Non-parametric

Sampling. IEEE International Conference on Computer Vision, Corf, Greece, September

1999.

[3] Li-Yi Wei and Marc Levoy. Fast Texture Synthesis using Tree-structured Vector

Quantization. In SIGGRAPH 2000, 479-488.

[4] Li-Yi Wei and Marc Levoy. Texture Synthesis Over Arbitrary Manifold Surfaces. In

SIGGRAPH 2001, 355-360.

[5] David J. Heeger and James R. Bergen, Pyramid-Based Texture Analysis/Synthesis. In

SIGGRAPH ’95, pages 229-238, 1995.

[6] Paul Billault. Texture Synthesis Algorithms. Ecole Polytechnique, Promotion X-98.

[7] Hamilton Chong. Image Inpainting and Texture Synthesis. Appears in:

http://www.people.fas.harvard.edu/~hchong/Spring2002/cs276r/

[8] A.C. Kokaram, R.D. Morris, W.J. Fitzgerald, P.J.W. Rayner. Interpolation of missing

data in image sequences. IEEE Transactions on Image Processing 11(4), 1509-1519,

1995.

[9] A. Hirani and T.Totsuka. Combing Frequency and spatial domain information for fast

interactive image noise removal. Computer Graphics, pp.269-276, SIGGRAPH 96, 1996.

[10] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image Inpainting. Computer

Graphics, SIGGRAPH 2000, July 2000, 417-424.

[11] Joel Castellanos. Automatic Synthesis of Isotropic Textures on Surface from Sample

Images. Master Thesis, University of New Mexico, Albuquerque, 2003.

[12] http://mrl.nyu.edu/~hertzman/topics00/MLCG2.pdf

[13] http://marsprogram.jpl.nasa.gov/

http://www.people.fas.harvard.edu/~hchong/Spring2002/cs276r/
http://mrl.nyu.edu/~hertzman/topics00/MLCG2.pdf

