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ABSTRACT 
 
 
A non-parametric texture synthesis technique is applied to the problem of digital image 

inpainting. The technique described primarily handles homogeneous texture images. 

Based on the Castellanos-Williams algorithm, the method implicitly assumes a Markov 

random field model for textured image regions. The non-parametric sampling procedure 

for image inpainting utilizes a series of binary mask Gaussian Pyramid level textures. 

Texture is synthesized in a coarse-to-fine order. The laplacian pyramid transform is used 

in the implementation. Resolution hierarchy plays a critical role in the analysis, synthesis 

and sampling process for efficiency and flexibility. The degree of randomness is crucial 

in the sampling routine. Here, the sampling process randomly and uniquely chooses a 

pixel from the initial synthesis guess level, combining with the sampling with-

replacement policy. Therefore, the sampling procedure generates a distribution that is 

very similar to the sample by running more than one time and taking into account the 
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neighborhood adjusting factor k. The combination of these contributes achievements to 

fulfill the best performance of image inpainting.  
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Chapter 1:  
 
 
Introduction 
 
 
 
1.1  Texture 
 
 
Texture is an attribute of an image, which is characteristic of appearance of a region with 

a statistically ergodic distribution. Textures can have a wide variety of characteristics, 

whether spatially homogeneous, or not, and may contain elements repeated either 

deterministically or randomly. From [1], we know that “there are three principal 

approaches used to describe texture: statistical, structural and spectral. Typically, the 

properties of a texture are computed from the grey level histogram of the texture region.” 

Sometimes, the visual appearance of the surface of a fabric or a beautiful painting 

exhibits an essential texture quality. Some textures are illustrated in Figure 1. 

 

          
 
              (a)                                (b)                               (c)                               (d) 
 
 
Figure 1: (a) A clover texture can be characterized statistically. (b) A real dinosaur skin 

example. (c) Texture of a piece of granite. (d) Texture formed by random arrangement of 

beans, which is isotropic texture at all scales.  
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1.2  Texture Synthesis 
 
 
Texture synthesis is the construction of a new image that is different from the original, 

but it has the same visual appearance as the original. Texture synthesis is another way to 

create textures distinct hand drawings and images from cameras. Also, synthetic textures 

can be made of arbitrary size, and visual repetition is avoided. In both computer vision 

and graphics, texture synthesis has been being an active research field and is involved 

with many image-processing based applications. Image inpainting is one important 

application which has used texture synthesis techniques. Sometimes, inpainting has been 

referred to as hole filling or foreground removal [2]. Other image based applications 

include image and video compression and animation. Indeed, texture synthesis techniques 

can be applied anywhere that requires description, analysis and synthesis of an image 

where the pixels have an ergodic distribution. Figure 2 shows some examples of texture 

synthesis results from different approaches. 
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(a) (b)                 
 

                                       
 
                                   (c)                                                         (d) 
 
 
Figure 2.  (a) An artifical sample image. (b) Efros and Leung’s synthesized result. (c) 

Castellanos-Williams result on surface of a sphere. (d) Our approach synthesized result. 

 
 
1.3   Inpainting 
 
 
There is no standard definition for image inpainting. Roughly speaking, the purpose of 

image inpainting is to remove an object from an image. The key point is how to make the 

image appear like the object never existed. In the literature, another application of image 

inpainting is described to repair a damaged picture. That means, for a scratched image, 

how can we restore so that it exhibits its undamaged appearance? Although, manual 

photographic restoration is an old topic. Digital image inpainting is a technique that 
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restores an image by smoothly filling a hole in a purely automatic fashion. The basic 

inpainting method involves removing some foreground object or creating a hole in an 

image. Texture synthesis procedure will then use the neighborhood or background texture 

to fill in the hole. After synthesis, the picture exhibits its synthesized texture and the hole 

should be undiscernable. The synthesized texture used to fill the hole comes from the 

neighborhood or background area that surrounds the hole or damaged area.  Figure 3 

shows some inpainting examples. In figure 3, (a) and (b) are an example for 

homogeneous image with hole filling; (c) and (d) are an example for non-homogeneous 

texture and the object spans different homogeneous regions; (e) and (f) are an example 

for non-homogeneous texture and the object locates inside one homogeneous region. 
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                                      (a)                                                      (b) 

                   

(c)                                                   (d) 
 

            
          

                             (e)                                                           (f) 
Figure 3: (a) and (b) are a real dinosaur skin image. (c) and (d) are inpainting examples in 

[7]. (e) and (f) are inapinting examples in [10]. 
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1.4   Markov Random Fields – Non-parametric Sampling Methods 
 
 
Markov Random Fields (MRF) are two-dimensional generalizations of Markov chains. 

They are used as texture models in many texture synthesis algorithms, which generate 

textures by a sampling process. MRFs have been shown to be a good approximation for a 

lot of texture types. Markov random fields capture the spatial structure of a texture by 

combining generic natural knowledge with a flexible formalism for specifying higher 

order interactions. Markov random fields models have been successfully used in many 

fundamental problems of image analysis, texture synthesis, and computer vision. The 

assumption underlying Markov random fields is that the probability distribution of spatial 

structure depends on the neighborhoods but is independent of the other parts of the 

image. 

  

Texture synthesis can be accomplished by a non-parametric sampling process based on 

neighborhood search method. This method takes a given input sample image and grows a 

new texture by synthesizing one pixel at a time. In order to determine an output synthesis 

pixel value, the neighborhood of a synthesis pixel is compared with all neighborhoods of 

the input sample image. The most similar pixel is then assigned to the output synthesis 

pixel. Here, the neighborhood size is very important to the algorithm’s performance. In 

order to synthesize the most similar texture possible, the neighborhood size should be 

large enough to model the local texture information exhibited in the input sample image. 

However, increasing the neighborhood size causes the algorithm to take more and more 

time to complete the synthesis so that the process becomes slow. In order to achieve a 
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compromise, a multi-resolution synthesis method is presented, where texture structure 

can be captured using relatively small neighborhoods. Multi-resolution synthesis schemes 

are thus faster than single resolution schemes. 
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Chapter 2:  
 
 
Related Work 
 
 
 
2.1 Efros and Leung  
 
 
In paper [2], the authors presented a non-parametric sampling technique for texture 

synthesis, “The texture synthesis process grows a new image outwards from an initial 

seed, one pixel at a time. A Markov random field model is assumed, ….., the method 

aims at preserving as much local structure as possible and produces good results for a 

wide variety of synthetic and real-world textures”[11]. Their method is a simple and 

efficient texture synthesis method that was based on Markov random fields. In the 

algorithm, a single pixel p is chosen as the unit of synthesis. Previously synthesized 

pixels in a square window around p are used as the context. In order to proceed with 

synthesis, the probability table for the distribution of p conditioned on all possible 

contexts is needed.  

 

In their work, textures are modeled as a Markov Random Field (MRF). ”They assume 

that the probability distribution of brightness values for a pixel given the brightness 

values of its spatial neighborhood is independent of the rest of the image. The 

neighborhood of a pixel is modeled as a square window around that pixel. The size of the 

window is a free parameter that specifies how stochastic the user believes this texture to 

be.”[11]. In our implementation, the neighborhood of a pixel to be synthesized is also 

modeled as a square window around the pixel. The values of the pixels are updated one 
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by one. The synthesized pixels are chosen randomly and the size of the neighborhood of a 

pixel is the only parameter that controls the randomness of the synthesized texture.  

 
 
 
2.2  Wei and Levoy  
 
 
In an extension to the Efros and Leung algorithm, Wei and Levoy developed a multi-

resolution neighborhood search based algorithm in [4]. Texture is synthesized in a 

coarse-to-fine manner. The input consists of an example texture and a random noise 

image. The process modifies the noise image to make it look like the given example 

image. By using a search algorithm for best neighborhood match and a multi-level 

resolution pyramid, the procedure can synthesize as much texture as is needed. The 

initialization is the first step, then the synthesis process uses two different matching 

procedures for each Gaussian pyramid level: 

 
1. Initialization: To start, level k of the synthetic Gaussian pyramid is populated with 

randomly chosen pixel values from level k of the analysis Gaussian pyramid. This 

initialization step is the source of randomness in the output texture. The other steps 

focus on the transformation of the output texture into something which resembles 

the input texture. 

2. Multi-level neighborhood matching: The multi-level synthesis transforms each 

level from lower to higher resolutions, “such that each higher resolution level is 

constructed from the already synthesized lower resolution levels.” [3]. For the first 

matching step, each pixel of the synthetic Gaussian level is visited in random order, 

like [2]. By means of an exhaustive search algorithm, the pixel with the most 
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similar neighborhood pixels is used to replace the pixel in the level being 

synthesized. However, in order to propagate information from coarse-to-fine scales, 

the first step neighborhood takes two levels of the Gaussian pyramid, it uses 

neighborhood pixels including level k and level k-1. 

3. Single-level neighborhood matching: This synthesis process is to make sure the 

synthesized pixel retains as much local texture information as possible. The final 

value of the synthesis output pixel at level k is determined by repeating the non-

parametric sampling procedure used in the first step. However, different than step 2 

whose purpose is to project texture information from coarse-to-fine scales, the 

neighborhood that is used in step 3 consists only of pixels at level k in the analysis 

Gaussian pyramid. 

 
2.3  Inpainting and Texture Synthesis 
 

The goal of image inpainting is to fill a hole in an image so that the hole is undetectable 

by observers. In the literature, there are three kinds of works related to digital inpainting. 

First is the restoration of films [8], second is related to texture synthesis [9], the last is 

related to disocclusion [10]. For the first technique, it cannot be applied to still images or 

to films where the regions to be inpainted span multiple frames. For the third technique, 

[10] showed that the algorithm can be viewed as solving a set of differential equations. 

“The fill-in is done in such a way that isophote lines arriving at the regions’ boundaries 

are completed inside. …, no limitations are imposed on the topology of the region to be 

inpainted.” [10].  
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For the second technique, there are many different ways to do inpainting with texture 

synthesis. For example, [9] combines frequency and spatial domain information in order 

to fill a given region with a chosen texture. Inpainting with texture synthesis can roughly 

be separated into two parts: Computing the information of pixels in relation to the 

neighboring pixels; finding the optimal pixel with matched neighbors by estimating the 

distance measure. Traditional inpainting algorithm is still useful since it performs quite 

well for small scratches and runs relatively fast. The texture synthesis method brings up 

some extra overhead and runs in time proportional to the size of the image.  

 

In recent years, pyramid-based multi-resolution texture synthesis has been adopted and 

used in many texture syntheses and inpainting algorithms. The Laplacian pyramid is the 

one that has been used widely, e.g., [4], [5]. A detailed explanation of the Laplacian 

pyramid transform will be presented in Chapter 4. Also, the Castellanos-Williams 

algorithm used in this thesis will be explained in detail in the next chapter. Finally, the 

similarities and differences between our method and Castellanos-Williams will also be 

discussed there.  
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Chapter 3:  
 
 
Castellanos-Williams   
 
 
 
3.1  Overview 
 
 
Our work is mainly based on the Castellanos-Williams algorithm, so in this part, I will 

give a detailed explanation of the Castellanos-Williams method as it relates to our work. 

The Castellanos-Williams algorithm implemented in [11] focuses on to synthesis texture 

from rectangular to surface and assumes the sample textures are isotropic, so they do the 

triangulation on the sample texture in order to have a good mapping from the rectangular 

sample to triangular grids on the surface. In our implementation, the sample texture will 

be synthesized from rectangular to rectangular shape and we do not assume the sample 

texture is isotropic, so triangulation does not need in our method. 

 

Although, the Castellanos-Williams algorithm for texture synthesis on surfaces is 

inspired by several multi-resolution methods [11], synthesis texture image by using non-

parametric procedure to sample an implicitly defined Markov Random Field, the main 

inspiration came from [4]. [2] also influenced to some extent. However, Castellanos-

Williams technique differs from other methods in some significant ways: The 

Castellanos-Williams method generates texture coarse-to-fine in a more efficient way by 

using a Laplacian pyramid transform; the non-parametric sampling procedure in [4] has 

been replaced with a routine which better preserves the first-order statistics of the input 

texture. Finally, they resample the input texture using a triangulated grid so that the 
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geometry more closely resembles the subdivision surface on which the texture will be 

synthesized. This also simplifies the optimal pixel searching process of the texture 

synthesis procedure. 

 

 

3.2  Coarse-to-fine Information Flow 

 

Unlike [4] who calculate just the Gaussian pyramid pixels of the target texture, the 

Castellanos-Williams method computes both the Gaussian and Laplacian pyramid pixels. 

Unlike the Gaussian pyramid alone, the Laplacian pyramid can be inverted. That means, 

the original function can be reconstructed from the Laplacian pyramid and a single 

residual Gaussian value. In the Castellanos-Williams algorithm, they synthesize both 

Gaussian and Laplacian pyramids in order to propagate information from coarse-to-fine 

scales. The biggest difference between Castellanos-Williams and Wei-Levoy is that the 

Castellanos-Williams algorithm returns both Gaussian and Laplacian pyramid pixels as 

the synthesis process proceeds. Every time, one optimal Gaussian pixel is copied to the 

synthesis side, at the same time the four children of the corresponding Laplacian pyramid 

are copied simultaneously during the synthesis process.  

 

In the Castellanos-Williams algorithm, the Laplacian pyramid transform plays an 

important role. We know for each Gaussian pyramid level, there is a corresponding 

Laplacian pyramid level which has twice the resolution.  Suppose the Laplacian pyramid 

transform transforms the target input image into m levels, the first level is 1, the second is 
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2, and this continue until level m. We call the original Gaussian and Laplacian levels 

from the input texture the analysis side, the intermediate synthesis texture is the pre-

sampling Gaussian level, and the post sampling Gaussian and Laplacian is the post-

sampling image. The pre-sampling and post-sampling belong to synthesis side. The 

Castellanos-Williams algorithm first takes the coarsest Gaussian level k and uses it to 

initialize the initial pre-sampling synthesis level pixels by randomly choosing pixels from 

the input Gaussian level k. Then the choosy sampling procedure uses this Gaussian level 

and the initial pre-sampling synthesis level texture to do the exhaustive neighborhood 

matching process. Each time an optimal matched pixel is found, the RGB values of this 

pixel is copied to the post-sampling synthesis Gaussian level and simultaneously the four 

children of Laplacian level k-1 are copied to the corresponding Laplacian pyramid level. 

Finally, the algorithm will project the post-sampling Gaussian level k, and then add the 

projected Gaussian level and the corresponding Laplacian level. This becomes the next 

pre-sampling synthesis level texture, and is a better approximation to the target texture 

than the texture at the previous level. The algorithm repeats this procedure until it reaches 

the finest level. After the algorithm reaches the finest level, the method will do the 

sampling process by using the input texture as the analysis image and then sampling the 

first pre-sampling synthesis level texture, because there is no Laplacian pyramid pixels to 

be copied. When this step is done, the final output image will be the Castellanos-

Williams texture synthesis output texture and will have the appearance of the input 

sample texture. During the whole algorithm, the exhaustive neighborhood matching will 

be very time consuming, the implementation described in [11] does all levels of synthesis 

in one whole program code. In my implementation, I have separated all levels of 
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synthesis from one whole program code into level-based program code. For each level, 

the code runs independently, this strategy enhances the performance.  

 

The Castellanos-Williams algorithm only randomizes the coarsest pre-sampling 

resolution synthesis with random values from the coarsest analysis Gaussian level, this 

randomization is transported through the entire algorithm to the finest resolution level. In 

contrast, [4] randomizes each level according to the input sample texture. Figure 4 

demonstrates an example of Castellanos-Williams Texture Synthesis technique operating 

on a rectangular texture region. 
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                                   Analysis                                            Synthesis 

                         Gaussian              Laplacian          Pre-sampling      Post-sampling Gaussian and Laplacian 

Coarsest 
 

Level 
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Figure 4: Texture analysis and synthesis. From top to bottom, the level from k to 1, the 

texture information proceeds from coarse-to-fine. In the first step, the pre-sampling 

texture is initialized with randomly chosen pixels from the coarsest Gaussian level. On 

the synthesis side, subsequent steps will use the previous post-sampling Gaussian and 

Laplacian level textures to generate the pre-sampling level texture for each step. The final 
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step use the original input as the analysis texture, and there is no Laplacian level in this 

step. The output will be the final texture synthesis result.  
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Chapter 4:  
 
 
Modification of Castellanos-Williams Algorithm 
 
 
4.1  Analysis 
 
 
In the Castellanos-Williams algorithm, the main intention is to synthesize texture from 

raster image to a surface represented as a triangulation, so they have changed the 

traditional Laplacian pyramid transform and made it suitable for transforming surface. 

Also, when doing the neighborhood matching, they consider six rotational phases of the 

input sample each rotated 60 degree relative to the previous. Finally, the Castellanos-

Williams method maps the square input pixels to triangular faces on surface. In addition, 

the Castellanos-Williams method can synthesize a bigger image than input sample 

because they use a scaling factor to adjust the synthesis texture scale corresponding to the 

input sample.  

 

In our approach, the goal is to do inpainting using texture synthesis process. The mapping 

is from square input pixels to square output pixels. During the process, the hole in the 

texture will be filled in using texture from the surrounding region. In order to finish the 

inpainting process, the Castelanos-Williams synthesis technique plays an important role. 

However, inpainting is different than pure texture synthesis. In particular, we need to 

preserve the image size, so a scale factor isn’t needed. Also, for the neighborhood 

matching procedure, in the Castellanos-Williams implementation, they do “wild-cards” 
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for boundary neighborhood matches. Basically, they assume that if the target pixel 

doesn’t have a full complement of neighborhood pixels, they use a fixed value to describe 

the missing neighborhood pixels on both the analysis and the synthesis sides, and when 

calculating the distance from the neighborhood, since on both sides they have the same 

pixel values for the missing pixels, the difference will be zero during the distance 

computation; the weighting process will be based on just the existing neighbors not the 

missing neighbors. Finally, the rotation step in the Castellanos-Williams implementation 

is not used in the inpainting algorithm since we do not assume that the sample texture is 

isotropic.  

 

For the Castellanos-Williams implementation, the triangulation increases the 

computational workload considerably. The 2-distant neighborhood is approximately 6×6 

neighborhood rectangular faces in size for the coarsest level Laplacian pyramid transform 

level and the sample is typically 8×8 in size. In inpainting, the neighborhood size is 7×7, 

so for a color image with 3 RGB values, one pixel has 48 neighbors with 3 RGB values. 

Consequently, there will be a 48(3)=144 dimensional neighborhood vector. The error 

distance computation will calculate the Euclidean distance between the two 144 

dimensional neighborhood vectors of the analysis and synthesis target pixels. The 7×7 

neighborhood showing the Euclidean distance from the center is as follows: 
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35    (3√2) 34    (√13) 33    (√10) 32        (3) 31    (√10) 30    (√13) 29    (3√2) 

36    (√13) 15    (2√2) 14      (√5) 13        (2) 12      (√5) 11    (2√2) 28    (√13) 

37    (√10) 16      (√5) 3        (√2) 2          (1) 1        (√2) 10      (√5) 27    (√10) 

38        (3) 17       (2) 4          (1) * 0         (1) 9          (2) 26        (3) 

39    (√10) 18      (√5) 5        (√2) 6          (1) 7        (√2) 8        (√5) 25    (√10) 

40    (√13) 19    (2√2) 20      (√5) 21        (2) 22      (√5) 23    (2√2) 24    (√13) 

41    (3√2) 42    (√13) 43    (√10) 44        (3) 45    (√10) 46    (√13) 47    (3√2) 

 

Table  1: 7×7 Neighborhood Illustration 

 

The digital number from 0 to 47 is the 7×7 neighborhood order. The number inside the 

bracket shows the basic Euclidean distance d between the neighborhood pixel and the 

center synthesis pixel. These distances are used for Gaussian weighting of distance. Later, 

we will show where and how to use this distance parameter. 

 

 

4.2 Details   

 

In addition above discussion to the texture synthesis to image inpainting, there are 

additional steps to apply which need to be done. The hole is represented by the value zero. 

Consequently, we need to do a gray scale transformation of the image to take intensity 

from the range 0-255 to the range 1-255. We use the image processing software package 
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called Gimp to remove the foreground object, and fill the hole grey scale value with zeros. 

The mask image is a binary image with two colors, zero denotes black pixel values and 

255 denotes white pixel values. The hole is black with pixel value zeros. Outside the hole 

is white with pixel value 255s. The Laplacian pyramid transform is done on the mask 

binary image as well as on the input texture. Finally, from the coarsest level to the finest 

level, when doing texture synthesis at each step of the pixel matching, the value of the 

mask pyramid acts like a switch, deciding whether a pixel can be picked as the optimal 

matching pixel and be copied into the texture being synthesized.  

 

 

 

 4.2.1  Input Texture Pre-processing 

 

For texture synthesis to be applied to inpainting, the first difficulty is that knowing how 

to detect whether a pixel in the sample image is a pixel inside or outside the hole. We 

know that the goal of texture synthesis by neighborhood matching is to synthesize a new 

texture from a sample input image. For synthesis only, you don’t need to worry about 

whether or not to use a pixel in the sample image. The algorithm will automatically pick 

the pixel using the choosy sampling process by searching through the whole sample 

texture. By choosing the synthesis pixels from the whole sample, the output image will 

resemble the original input texture. However, an inpainting algorithm can not choose 

pixels that are inside the hole of the original texture. The goal of the algorithm is to 

choose pixels outside the hole of the sample texture as samples and fill in the hole with a 
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texture so that the resulting image looks intact. For this reason, the mask pyramid is 

applied, and the sample texture needs to be processed. The preprocessing is simple. For a 

given gray scale sample texture, the pixel values are distributed between 0 and 255, the 

gray scale transformation is to multiply each RGB value with a fraction (254/255), then 

adding one to the result. After this transformation, the RGB values of the sample texture 

will be bounded within 1 to 255. Mathematically, if we suppose that the pixel value of the 

sample texture is g(x), after the preprocessing pixel value is f(x), then: 

 

Using this formula, the input image has only been slightly changed.  

 
 
 
4.2.2 Analysis and Synthesis 
 
 
 
Pyramid-based texture analysis and synthesis techniques have been introduced and used 

in many image processing applications, e.g., [4, 5, 11,]. Typically, image or texture is 

decomposed into a set of subbands. The subband transform makes an image to a 

particular pyramid type, which defines the characteristic of the texture.  The subbands 

are calculated by convolving and downsampling by a factor of two. This produces a 

series of images with different size, which are called an image pyramid. 

 

The Laplacian pyramid transform can be the basis for an effective pyramid based texture 

synthesis method. There are two basic operations: reduce and project. The reduce 

operation uses a low pass filter. The image is convolved with a Gaussian kernel and then 
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subsampled by a factor of two in the width and height dimensions. The project operation 

upsamples the image with a factor two in each dimension. A full level of the pyramid 

consists of two images, Gk (a low pass image) and Lk (a high pass image): 

 

 
Tle Laplacian pyramid transform is a linear and reversible transformation. The upper 

level Gk-1 image can be reconstructed from Gk and Lk: 

 

So the original image can be constructed as: 

 
 
The above Laplacian pyramid transform representations Gk and Lk are also described as 

Gaussian pyramid level and Laplacian pyramid level. Figure 5 is an example of Gaussian 

and Laplacian pyramid levels of Laplacian pyramid transform. 

Gaussian               
 

Laplacian                 
 
 

Figure 5: Example of Gaussian and Laplacian pyramid levels 
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4.2.3 Neighborhood Matching Details 
 
 

Texture is an important attribute of images, especially for computer graphics, it increases 

the visual realism of images. Texture synthesis is a useful way to produce a texture 

image of an arbitrary size. Neighborhood matching is the crucial part in texture synthesis. 

The first step for neighborhood matching is to define the size of the neighborhood. In our 

implementation, the 7×7 neighborhood is defined as indicated by the pattern in Table 1. 

The spiral ordering from 0 to 47 around the central pixel enumerates the 48 neighbors for 

a simple pixel in the image. The basic Euclidean distance of a neighbor pixel is 

calculated according the Euclidean distance computation formula and the pixel’s 

coordinates in the image representation, which assumes two adjacent pixels’ Euclidean 

distance is unit. So if P1(x,y) and P2(u,v) are two points in an image, the basic Euclidean 

distance will be as follows: 

 

 
All the basic Euclidean distances of the 48 neighbors are calculated and shown in Table 

1.  

 

As shown in Table 1, a 7×7 neighborhood is comprised of 48 neighborhood pixels. For a 

color image, each pixel has 3 RGB values. Consequently, there will be 3(48) = 144 

values per neighborhood. If using an array to express these values, it can be treated as a 

144 dimensional vector. The localized texture is captured by weighting the error distance 
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through a Gaussian function between the two vectors of analysis side and synthesis side 

neighborhood. The neighborhood weighting scale factor is defined as: 

 

where, di is the basic Euclidean distance, σ is the Gaussian function parameter, in our 

implementation, σ is 4.0. The function of the weighting scale factor is to weight the 48 

neighbors of the two pixels between analysis and synthesis pyramid level.  

 

During the implementation of inpainting, in order to avoid generating seam on the 

boundary of the hole, there is another adjusting factor k, which is used to adjust the 

neighborhood error distance according to whether a neighborhood pixel is located inside 

the hole or outside the hole. When computing the error distance of the two vectors, first 

we need to determine the neighborhood pixel position by using the binary mask pyramid 

image that has the same size as the analysis level image. If a random sampling pixel in 

the synthesis step is chosen, the coordinates of the pixel are transmitted to the 

ErrorDistance() procedure. The procedure uses the corresponding mask level image to 

compare the neighborhood pixels’ values in the coordinates with 255. If the 

neighborhood pixel values are not 255, it is inside the hole. If the pixel values are 255, it 

is outside the hole. After getting the neighborhood pixel position, it works as a switch. If 

the pixel is inside the hole, the adjusting factor one is used during the Euclidean error 

distance computation; if it is outside the hole, the adjusting factor k is used during the 

Euclidean error distance computation corresponding to each dimension within the 144 

dimensional vector. The Euclidean error distance computation between the two vectors is 
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to make subtraction for the corresponding pixel RGB values, then squares it and sums all 

the results and does square root on the final result.  The working equation is as follows: 

 

ai ∈ {1, k} is an indicator variable. If a pixel is inside of the hole, ai takes value 1; if a 

pixel is outside of the hole, ai takes value k. It is decided by the neighbor position in the 

mask level image whether a pixel is inside or outside of the hole. XAi denotes the i-th 

coordinate of the analysis neighborhood vector; XSi denotes the i-th coordinate of the 

synthesis neighborhood vector. And, wi is the neighborhood weighting scale factor as 

defined in previous equation. By using the adjusting factor k, we have found there is a big 

improvement on the synthesis texture of inpainting. This method makes the boundary of 

the hole to be visual appearance seamless in a significant way.  

 

The sampling routine calculates the final distance of the two vectors by multiplying a 

factor of 1.005(C[j]-Cmin ), here the base is different from the Castellanos-Williams’s 

method. c[j] represents the number of times that  pixel j  in the analysis Gaussian 

pyramid has been selected and copied to the synthesis post-sampling pyramid level. cmin 

represents the minimum number of times that any pixel in the analysis Gaussian pyramid 

level has been selected. The pixel j of the target Gaussian pyramid level is selected such 

that the final distance is a minimum by exhaustive searching through traversal every pixel 

in the given Gaussian pyramid level. The random order is performed in the sampling 

procedure, which plays an efficient sampling process. In order to enhance the algorithm 

performance, we have been running the random sampling procedure with different times 
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and different k values. Theoretically, the more times running for the sampling, the better 

the results for inpainting. In our practice, many results are performed by running 4 times 

and k equals 8 under the combination of σ equals 4.0 and cmin base is 1.005. However, the 

time consuming is exponential increasing with the texture size increasing.  

 
 
 
4.2.4 Coarse-to-fine Information Flow with Mask Pyramid 
 
 
 
For inpainting implementation, the mask pyramid plays an important role on the texture 

synthesis process. The mask pyramid is a binary Gaussian pyramid level, all of the pixel 

values are 0 or 255. Zeros denote the black pixels that consist into the hole. 255s denote 

the white pixels that consist into the outside part of the hole. In order to computer the 

error distance of the two vectors, we need to determine the neighborhood pixel position 

by using the binary mask pyramid level image. If a random sampling pixel in the 

synthesis step is chosen, the coordinates of the pixel are transmitted to the 

ErrorDistance() procedure. The procedure uses the corresponding mask level image to 

compare the neighborhood pixels’ values in the coordinates with 255. If the 

neighborhood pixel values are not 255, it is inside the hole. If the pixel values are 255, it 

is outside the hole. If the pixel is inside the hole, the adjusting factor one is used during 

the Euclidean error distance computation; if it is outside the hole, the adjusting factor k is 

used. The Euclidean error distance computation between the two vectors is according to 

the Errordistance equation.  Figure 6 is an example of the coarse-to-fine information 

flow with mask pyramid level.   
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Figure 6: Coarse-to-fine information flow with mask pyramid  
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4.2.5 Algorithms 
 
 
All algorithms’ descriptions of the above texture synthesis technique to inpainting are 

exhibited as follows: 

Readppm(): An algorithm that reads a PPM ASCII image information and stores pixel 

values into a data file without the PPM head structure. 

Makeoriginalmask(): An algorithm that calculates the original mask image according to 

the input image data file information. 

Adjust(): An algorithm that adjusts the original input texture according to the image 

preprocessing requirements. 

Reduce(): An algorithm that accomplishes the Laplacian pyramid transform level by 

level by acting on the input texture data file and the original mask file with Gaussian 

convolution. 

Project(): An algorithm that executes upsampling and Gaussian convolution for the 

given Gaussian pyramid level image. 

Laplacian(): An algorithm that does transaction for generating Laplacian pyramid level 

image. 

DoConvolution(): A function that calculates the Gaussian convolution for given 

Gaussian kernel. 

Swap_indexes() and Random_perm(): Functions that generate the random order 

synthesis pixels. 

Cminimum(): A function that finds the minimum number of a pixel in the given analysis 

Gaussian pyramid level has been selected and used in the post-sampling texture. 
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ErrorDistance(): A function that computes the error distance of the two neighborhood 

vectors with the neighborhood weighting  and adjusting factors. 

NeighborFind(): A functions that finds the neighborhood pixels of the analysis side. 

Sampling(): This is the main procedure of the texture synthesis algorithm, which finds 

the optimal pixels for filling in the hole. 

 

The formalizations of texture synthesis and sampling algorithms are shown in the 

following tables: Table 2 and Table 3. In our implementation, the whole texture 

synthesis algorithm has been divided into five (for 128×128 image) or six (for 256×256 

image) or seven (for 512×512 image) individual steps. With the increasing of the input 

texture size, the later steps will take more time to finish sampling process. Among all the 

synthesis steps, the first step is to do synthesis with the coarsest level texture, and 

randomly choosing pixels from the coarsest Gaussian level texture to fill in the initial 

pre-sampling level texture. The sampling process uses the coarsest Gaussian level as 

analysis input texture and the outputs are the post-sampling Gaussian and Laplacian 

level textures. The last step is to finish the final synthesis process, which uses the 

original input texture as the analysis input and the previous step output as the pre-

sampling texture, there is no Laplacian level image in this step. The inputs of the 

intermediate steps are the corresponding Gaussian and Laplacian level image on analysis 

side and the pre-sampling level texture from the previous step.   
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Texture synthesis algorithm pseudocode summary. 
 
TextureSynthesis(I0)  

Begin 

        Level  ←  log2(size(I0)) 

        GM0  ← MakeOriginalMask(I0) 

        For i = 0 to Level do 

                 〈 GAi, LAi〉  ← LaplacianPyramidTransform(I0) 

                 GMi  ← LaplacianPyramidTransform(GM0) 

        End 

        GGlevel ← Random(GAlevel) 
 
        For j = Level to 0 do 

                 〈 GSj, LSj〉  ← Sampling(GAj, LAj-1, GGj, GMj) 

                 GGj-1 ← Project(GSj) + LSj-1 

        End 

        return(GS0) 
 
End 
 

Table 2: Texture synthesis algorithm 
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Sampling algorithm pseudocode summary  
 
Sampling(GA, LA, GGk, GM)  

Begin 

        Cmin  ←  MAX_INT 

        MinimumDistance  ← MAX_FLOAT 

        Sampling_num  ←  0 

        While (Sampling_num < 4) do 

              For  i = 1 to size(GA)  do 

                  Cmin  ← Cminimum(c[]) 

                  RandomRow = Random(Height(GA)) 

                  RandomCol  = Random(Width(GA)) 

                  ΩS  ← NeighborFind(GGk, RandomRow, RandomCol) 

                          For j=1 to size(GA) do 

                                 If  j is not in hole determine by using GM  Then 

                                        ΩA  ←  NeighborFind(GA, j) 

                                        d  ← ErrorDistance(ΩA, ΩS)1.005(c[j]-Cmin) 

                                        If   d < MinimumDistance  Then 

                                                Optimal  ← j 

                                                 MinimumDistance ← d        

                                        End 

                                        c[Optimal]  ← c[Optimal] + 1 

                                 End 

                                 GS (RandomRow, RandomCol) ← GA(Optimal) 
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                                 LS (RandomRow*2, RandomCol*2) ← LA(Optimal*2) 

                          End 

              End 

        End While 

        GG  ← Project(GS) + LS 

        Return GG 

End 
 

Table 3: Sampling algorithm 

Notations: 

Symbol Meaning 
I0 original input texture sample 
GA analysis Gaussian pyramid level 
LA analysis Laplacian pyramid level 
GG pre-sampling synthesis pyramid level 
GM mask pyramid level 
ΩS synthesis neighborhood vector 
ΩA analysis neighborhood vector 
GS post-sampling Gaussian pyramid level 
LS post-sampling Laplacian pyramid level 
c[] array for storing the number of pixels have been selected  

RandomRow the row number of the synthesis pixel 
RandomCol the column number of the synthesis pixel 

Optimal the best match pixel position 
d the Euclidean distance of the two neighborhood vectors 

size() giving the total number of pixels of an image 
Cmin the minimum number of times of a pixel has been selected 
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Chapter 5:  

  

Results 

 

All of the results shown in this chapter use four pyramid levels of resolution for 128×128 

samples, five levels of resolution for 256×256 samples. The 7×7 neighborhoods are used 

in the sampling process at all levels. Some of the samples are provided by Joel 

Castellanos [11]. Some of the samples are downloaded from NASA’s web site [13]. 

Some of them are taken from Peterson Multimedia Guides: North American Birds. Here I 

want to thank all of the contributors for distributing the images that help me a lot.  

 

In our implementations, some holes are rectangular shapes that were taken on purpose. 

Others are made according the natural objects geometry shape. Rectangular holes are 

more difficult to do inpainting than the natural geometry holes because they often 

generate seams on the boundary of the holes. 

 

The sample presented in Figure 7 is a clover texture that has been purposely made a 

rectangular hole, then the sampling process is used to fill in the hole with surrounding 

texture information.  
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(a)                                               (b)                                           (c) 

Figure 7: (a) Original sample texture. (b) Sample texture with hole. (c) Our inpainting 

algorithm result. 

 

Figure 8 is another clover texture with a rectangular shape hole and has been synthesized 

by using surrounding pixels to fill in the hole. 

                                        

(a)                                               (b)                                           (c) 

 

Figure 8: (a) Original sample texture. (b) Sample texture with hole. (c) Our inpainting 

algorithm result. 

 

Figure 9 is a 256×256 texture of randomly arrangement beans, which is isotropic at all 

scales. The hole is also a rectangular shape. 
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(a)                                                                           (b)  

 

                                                                  (c) 

Figure 9: (a) Original sample texture. (b) Sample texture with hole. (c) Our inpainting 

algorithm result. 

 

The bar sample shown in Figure 10 is not good. In general, our method fails with such 

textures. The algorithm has been trying to closely match the original, however the seam 

on the boundary is clearly appearing. What we understand is that the sampling method is 
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too greedy and results in loosing the first-order statistics. For the boundary, we may need 

other strategies to handle it. This will be a part of our future work. 

                                      

(a)                                             (b)                                                (c) 

Figure 10: (a) The original image. (b) The image with a hole. (c) Our synthesized result. 

 

For the above results, the holes are rectangular shapes that can be made arbitrary inside 

the image region. Followings are some examples that apply the algorithm to natural holes 

for inpainting.  

                                             

(a)                                                    (b)                                                (c)     

                                                

            (d)                                                       (e)                                               (f) 

Figure  11: (a) and (d) are  the original textures. (b) and (e) are the hole textures. (c) and 

(f) are the inpainting results. 
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There are some sample images downloaded from NASA’s web site, which are showing 

the surface of Mars. We performed the inapinting algorithm on these images for 

removing some objects such as rocks. The performance is good.  

 

                                   

(a)                                           (b)                                            (c) 

                                   

(d)                                           (e)                                            (f) 

Figure 12 
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Figure 13 
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Figure 14 

There is another example that compares Wei’s result [12] with our result in Figure 13. 

For this example, the difficulty is that the original texture contains different texture 

region, however, our approach still achieves a very good result. 
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           (a)   Original sample image                           (b) Li-Yi Wei’s result 

                      

(c) Our hole image                                 (d) Our inpainting result 

Figure 15 

Except above experimental results, following is an example that the hole spanning two 

different texture regions, and the hole is filled in by just one part of the texture region 

through our algorithm. For this kind of situation, texture segmentation is needed for 

inpainting through our algorithm. 

                                

Figure 16: Hole spanning two different textures example. 
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For the result showed in Figure 10, we know that it is not good. In order to have a good 

understanding what reason results into the negative inpainting result. We separate the 

high and low frequency of the texture, so we have two different textures bar and cloud. 

Through experiments, we find that the low frequency contained in the original image 

contributes more on the negative result.  

  

                                   

                                   

Figure 17: Barcloud low and high frequency inpainting comparison. 
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Chapter 6:  

 

Complexity Analysis 

 

For the performance, the most computationally work of the algorithm is the sampling 

procedure. We usually use a neighborhood size 3×3 for the coarsest level sampling 

procedure, and 7×7 for the rest of the levels sampling procedure. The Laplacian pyramid 

transform transforms any texture to the coarsest level which is 8×8 size image. So for a 

128×128 sample texture, there will have four levels of Laplacian pyramid, five levels of 

Laplacian pyramid for a 256×256 sample texture, and six levels of Laplacian pyramid for 

a 512×512 sample texture, and so on. During our experiments, we have separate each 

level as an individual process. For different levels, the time complexity heavily depends 

on the texture size in that level. Also, we know for inpainting the hole or real object size 

will determine the pixels that are synthesized by using sampling procedure. So the hole or 

object size is the realistic reason that determines the time complexity. However, through 

our experiments, we find that for the same level, even for different textures, the running 

time approximately tends to the same value. In order to have an precision demonstration 

of the algorithm complexity, we take all the running examples and each level running 

time. The coarsest level running time is approximately 2 seconds, the level adjacent to the 

coarsest level running time is 3 seconds. Table 4 shows a detailed explanation for each 

level running time with a 128×128 sample texture. Table 5 shows the running time for 

256×256 sample textures.  
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Levels 

 

      

4 2s 2s 1s 3s 3s 2s 

3 2s 2s 2s 3s 3s 2s 

2 18s 19s 16s 18s 22s 18s 

1 328s 342s 254s 328s 381s 299s 

0 5450s 5968s 4121s 4260s 7117s 4762s 

 

Table 4: 128×128 sample textures running time illustration. 

Levels 

   

5 2s 3s 4s 

4 2s 3s 5s 

 3 18s 18s 22s 

2 328s 295s 437s 

1 6957s 4762s 10084s 

0 56910s 23901s 79581s 

 

Table 5: 256×256 sample texture running time illustration. 
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All of the results experiments above is implemented in Visual C++6.0, running on a 

2.0GHz Intel Celeron CPU with 512MB RAM, and usually the CPU usage is about 

95~96%.  
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Chapter 7:  

 

Main problems and Future Work 

 

There are many different techniques that use texture synthesis to do image inpainting for 

computer-based image process. In our implementation, the most difficult thing is how to 

deal with the seams. We have found that some inpainting results are good for some 

samples, and some results are acceptable. However, there still have some textures are 

very difficult for inpainting by using this non-parametric texture synthesis method. For 

example, a texture that includes different texture regions and the hole spans different 

regions. By using the k factor to adjust the neighborhood distance and sampling more 

than one time have been proven to be a strong improvement on the inpainting 

performance. But the seam is remaining as the biggest problem.  

 

For our experiments, we mostly chose the homogeneous texture as our input image. From 

above examples, we can see that many textures are homogeneous because we firstly think 

this algorithm is not suitable for non-homogeneous texture. However, we finally found 

this technique also does a great job on some non-homogeneous texture images as long as 

the hole locates in one homogeneous region. This has been proven in Figure 12. But for a 

general non-homogeneous texture image and the hole spans among different 

homogeneous region remaining as an unsolved problem for our technique. 
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There is another problem related to the time complexity.  Our algorithm is deeply time 

 consuming with the increasing of the image size. For our practice, a 256X256 texture 

will take more than one day to finish the final step synthesis on a 2.0GHz Celeron 

Pentium IV with 512 MB RAM. 

 

Our future work will focus on how to solve the seam problem and perform inpainting 

technique to general non-homogeneous texture. The goal is to produce a seamless texture 

synthesis technique to inpainting that works on general texture image. For this reason, 

texture segmentation will be a part of the work. Also, speeding the algorithm is another 

important part of the future work. 
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Chapter 8:  

 

Conclusion 

 

Texture is an important attribute of images. Texture synthesis has many applications in 

image processing. Inpainting is an old and hot topic in image restoration or removing 

unwanted objects from an image. The technique we demonstrated in this thesis is an 

automatic non-parametric texture synthesis algorithm applying to image inpainting.  

Comparing with other methods of inpainting, this technique works at a flexible position. 

It could be applied to some situation that requires flexible and good performance for 

small still texture inpainting.  

 
From Efros and Leung, Wei and Levoy to Castellanos-Williams, they all have influence 

on this thesis, although this work directly stands up on the Castellanos-Williams idea for 

texture synthesis.  

 

The extension of the application for this method is over more general categorized texture 

image. Surely there will have more challenge on the future work. 
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