
Implementation of Steerable Pyramids
with Hexagonal Sampling

by

Ron L. Hospelhorn

B.S., Physics, California Institute of Technology, 1974

THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2006



c©2006, Ron L. Hospelhorn

iii



Acknowledgments

I would like to thank my adviser, Professor Lance Williams, for his support and
technical advice.

iv



Implementation of Steerable Pyramids
with Hexagonal Sampling

by

Ron L. Hospelhorn

ABSTRACT OF THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2006



Implementation of Steerable Pyramids
with Hexagonal Sampling

by

Ron L. Hospelhorn

B.S., Physics, California Institute of Technology, 1974

M.S., Computer Science, University of New Mexico, 2006

Abstract

Multi-scale image processing frequently serves as the first step in scene analysis, pat-

tern recognition, texture analysis, image reconstruction, and many other early vision

tasks. A pyramid architecture analyzes an image independently at several scales, and

a steerable pyramid can extract oriented features at each of those scales. Hexagonal

sampling of image data promises processing economies over rectangular sampling as

well as higher angular resolution. This thesis discusses the implementation of filters

for hexagonally sampled data and uses them in two steerable pyramid designs.

vi



Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Pyramid Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Hexagonal Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Two Steerable Pyramids 15

2.1 Pyramid Processing Structures . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Original Shiftable Steerable Pyramid . . . . . . . . . . . . . . . . . . 21

2.3 Standard Shiftable Steerable Pyramid . . . . . . . . . . . . . . . . . . 25

3 Filter Implementation 31

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



Contents

3.2 Polar Fourier Transform (Analytical) Method . . . . . . . . . . . . . 35

3.3 Frequency Domain Resampling . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Hexagonal Sampling and Frequency Scaling . . . . . . . . . . 43

3.3.2 Fourier Transform of Hexagonally Sampled Series . . . . . . . 46

3.3.3 Forming a Hexagonal Fundamental Period . . . . . . . . . . . 49

3.3.4 The Hexagonal Fast Fourier Transform . . . . . . . . . . . . . 51

3.3.5 McClellan Frequency Transformation . . . . . . . . . . . . . . 53

3.4 Oriented Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Pyramid Reconstruction Accuracy 61

4.1 Accuracy of the Radial Filters . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Reference Reconstruction Performance . . . . . . . . . . . . . 64

4.1.2 Accuracy of the Original Shiftable Pyramid . . . . . . . . . . 65

4.1.3 Accuracy of the Standard Shiftable Pyramid . . . . . . . . . . 68

4.2 Accuracy of the Oriented Filters . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Rectangular Standard Shiftable Pyramid Accuracy . . . . . . 71

4.2.2 Steerable Original Shiftable Pyramid Accuracy . . . . . . . . . 72

4.2.3 Hexagonal Standard Shiftable Pyramid Accuracy . . . . . . . 73

4.2.4 Additional Oriented Filters for the Original Shiftable Pyramid 74

5 Noise Reduction Using Local Orientation Analysis 79

viii



Contents

5.1 Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Local Orientation Mapping . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Noise Reduction Application . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Future Work 95

A Kernels 99

B Matlab/Octave Filter Code 106

B.1 Octave Code for Inverse Polar FT . . . . . . . . . . . . . . . . . . . . 107

B.2 Kernel Size Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.3 McClellan Transformation Scripts . . . . . . . . . . . . . . . . . . . . 110

B.4 HFFT Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.5 Formatting a Hexagonal Fundamental Period . . . . . . . . . . . . . . 115

B.6 Oriented Filter Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.7 Kernel Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.8 Accuracy Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.9 Miscellaneous Matlab/Octave Routines . . . . . . . . . . . . . . . . . 126

References 127

ix



List of Figures

1.1 Six level image pyramid with three orientations. . . . . . . . . . . . 2

1.2 Laplacian pyramid block diagram . . . . . . . . . . . . . . . . . . . 6

1.3 Possible symmetries for regular tilings. . . . . . . . . . . . . . . . . . 10

1.4 Hexagonally sampled image with hexagonal pixels . . . . . . . . . . 12

1.5 Expanded rectangularly sampled image . . . . . . . . . . . . . . . . 13

2.1 Block diagram of pyramid decomposition . . . . . . . . . . . . . . . 18

2.2 Initial low-pass filter L0 for original shiftable pyramid. . . . . . . . . 23

2.3 Recursion low-pass filter L1 for original shiftable pyramid. . . . . . . 24

2.4 Band-pass filter B for the original shiftable pyramid. . . . . . . . . . 24

2.5 Kernels for L1, L0, and radial BP . . . . . . . . . . . . . . . . . . . . 25

2.6 Initial low-pass filter L0 for standard shiftable pyramid. . . . . . . . 28

2.7 Recursion low-pass filter L1 for standard shiftable pyramid. . . . . . 28

2.8 Band-pass filter B for standard shiftable pyramid. . . . . . . . . . . 29

2.9 L0, L1, and radial BP kernels for standard shiftable pyramid. . . . . 29

x



List of Figures

2.10 Power sum of band-pass and recursion low-pass filters. . . . . . . . . 30

3.1 Two kernel construction methods for circular filters. . . . . . . . . . 32

3.2 Influence of 1-D kernel values on circularly symmetric kernel values. 37

3.3 Grid and coordinate system for hexagonal sampling . . . . . . . . . 43

3.4 Dimensions of band limited hexagonal region . . . . . . . . . . . . . 44

3.5 Hexagonal fundamental periods as a tiling of hexagons and equivalent

parallelograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Division of fundamental period hexagon into equivalent parallelogram. 50

3.7 Procedure for constructing an oriented kernel by analytical inverse

polar Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Radial kernel profile as function of angular function order. . . . . . . 59

3.9 Procedure for constructing an oriented kernel by resampling method. 60

4.1 Images used for measuring reconstruction accuracy. . . . . . . . . . 63

4.2 Band-pass responses for 7, 13, and 20 hexagonal kernel layers. . . . . 66

4.3 “lena” image convolved with three cos2(θ) basis kernels. . . . . . . . 77

4.4 “lena” image convolved with six cos5(θ) basis kernels. . . . . . . . . 78

5.1 Square and hexagonal downsampling patterns for noise reduction

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 0 ◦ basis kernel for cos5(θ) oriented filter and its quadrature counter-

part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xi



List of Figures

5.3 “Cross” image used for orientation maps. . . . . . . . . . . . . . . . 84

5.4 Orientation maps at center, upper horizontal edge, right vertical edge

of the cross. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Locations of orientation mapping points for “lena.” . . . . . . . . . . 86

5.6 Orientation maps at various points of “lena” image. . . . . . . . . . 87

5.7 Noise reduction by local orientation analysis. . . . . . . . . . . . . . 88

5.8 Hexagonal and square downsampled images with noise reduction. . . 91

5.9 Full resolution image with noise reduction. . . . . . . . . . . . . . . 92

xii



List of Tables

4.1 Accuracy of standard shiftable pyramid on rectangular grid . . . . . 64

4.2 Accuracy of original shiftable pyramid with analytical filters . . . . . 67

4.3 Accuracy of original shiftable pyramid with transformed filters . . . 67

4.4 Accuracy of standard shiftable pyramid with analytical filters . . . . 69

4.5 Accuracy of standard shiftable pyramid with transformed filters . . . 70

4.6 Accuracy of rectangular standard shiftable pyramid with cos(θ) . . . 71

4.7 Accuracy of rectangular standard shiftable pyramid with cos3(θ) . . 71

4.8 Accuracy of original shiftable steerable pyramid with cos(θ) . . . . . 73

4.9 Accuracy of original shiftable oriented pyramid with cos3(θ) . . . . . 74

4.10 Accuracy of oriented standard shiftable pyramid with cos(θ) . . . . . 75

4.11 Accuracy of oriented standard shiftable pyramid with cos3(θ) . . . . 76

4.12 Accuracy of original shiftable oriented pyramid with cos2(θ) . . . . . 76

4.13 Accuracy of original shiftable oriented pyramid with cos5(θ) . . . . . 77

A.1 Original Shiftable direct circular kernels . . . . . . . . . . . . . . . . 101

xiii



List of Tables

A.2 Original Shiftable direct oriented kernels . . . . . . . . . . . . . . . 102

A.3 Original Shiftable transformed circular kernels . . . . . . . . . . . . 103

A.4 Standard shiftable analytical kernels . . . . . . . . . . . . . . . . . . 104

A.5 Standard shiftable transformed kernels . . . . . . . . . . . . . . . . . 105

xiv



Chapter 1

Introduction

1.1 Pyramid Decompositions

Image scene analysis begins with processing that enhances and (possibly) isolates

image features. Such features occur in natural images at a number of spectral scales,

and the features at each scale should generally be processed separately. Decomposing

the image into component images which contain information specific to a particular

scale may be accomplished by passing the image through filters corresponding to the

scales of interest. Multiple orientations at each scale are similarly processed using

filters that are “tuned” for orientation.

Figure 1.1 shows a recursive pyramid decomposition with three orientation sub-

bands and six levels of scale [7, 22].

1



Chapter 1. Introduction

Figure 1.1: Six level image pyramid with three orientations.

2



Chapter 1. Introduction

The image processed through filters oriented at 0 ◦, 60 ◦, and 120 ◦ appears in

the upper left, upper right, and lower left quadrants, respectively. The lower right

quadrant contains the recursive pyramid of the same image filtered to prevent aliasing

and down sampled by a factor of two. Note that important image features disappear

and reappear from one orientation to another, and that this behavior persists over a

wide range of scales.

The preceding image set represents an encoding of the original image by a math-

ematical operator known as an overcomplete wavelet transform [22]. Although a

complete description of wavelet transforms cannot be offered here, a useful devel-

opment can be found in the textbook on image processing by Castleman [5]. This

source provides a number of insights about wavelet transforms that we can use to

build a case for the advantages of a pyramid algorithm for image processing. One

such insight is that a function may be represented as the weighted sum of basis func-

tions, or equivalently, the dot product of the weight coefficient vector and a vector

of basis functions. The set of weighting coefficients is known as the transform of

the function. If the function resembles one of the basis functions, then its transform

would be restricted to a small set clustered around the coefficient whose basis func-

tion matches it most closely. Looking at it another way, if we were to build a filter

bank comprising the set of basis functions and process the input function through

it, we would expect strong responses from the filters whose basis functions surround

the matching basis function, with the strongest response coming from the matching

basis function itself. Other filters would response weakly.

The Fourier series is the most familiar example of a transform for periodic (or

periodically extended) functions. The harmonic function eikωt, where k takes on all

integer values or the trigonometric functions sin(kωt) or cos(kωt), where k takes on

all nonnegative integer values, serve as the Fourier basis functions. The transform

of a function using the Fourier series is the set of Fourier coefficients. Similarly,

3



Chapter 1. Introduction

the continous Fourier transform uses the harmonic function parameterized in k as its

basis function but lets k take on a continuum of values [3]. Consequently, it produces

a continuous function as its transform, and represents the dot product as an integral

rather than a sum. The Discrete Fourier Transform (DFT) is the Fourier transform

of a function sampled at uniform intervals [5].

Whatever version of the Fourier transform we use, the basis functions are pe-

riodic functions of infinite extent. Naturally occurring signals, such as digitized

images, are functions which contain features of finite extent and do not resemble any

single Fourier basis function. The image function will therefore be represented by a

weighted sum of many basis functions, and its transform will therefore extend over

much of the transform space. One consequence of this fact is that the position of any

given feature cannot be easily read out from the transform. Another consequence

is that, since no basis function resembles an image feature, a filter bank built up of

the basis functions would not produce a response that would clearly select one basis

function over any of the others. Thus, the Fourier transform could not be easily used

to identify image features.

A wavelet transform attains the ability to both identify and locate signal features

by utilizing basis functions that resemble those features. The basis functions are

strongly localized in extent so that they can closely represent signal features of a

particular size. This being the case, the location of a basis function, which has no

meaning for harmonic functions, now matters. Wavelet basis functions therefore

specify both scale and location, so that from the preceding arguments, a set of such

basis functions could represent the salient features of an image very compactly if

designed correctly.

Intuitively, we would expect that a large feature matches with a basis function of

larger extent, and a small feature matches a basis function with smaller extent. This

follows from simple scaling, where we would want to apply the identical but scaled

4



Chapter 1. Introduction

basis function to an identical but scaled input function. That is, the transform is

scale invariant . When dealing with continuous transforms, scale may be handled

with the similarity theorem [3, 5]. However, the pyramid algorithms discussed in

this thesis deal exclusively with sampled image functions and therefore with discrete

transforms. A two-dimensional basis function that matches an image feature at a

small scale will require a2 the number of points to represent it when scaled to match

a similar feature that is a times larger. The number of points needed to represent the

smallest basis function is determined by the sampling interval required to perfectly

reconstruct the original image. By the Nyquist Sampling Criterion [3, 5], this is one

half the size of the smallest feature of interest. The image must be band limited

(its resolution controlled) so that the “smallest feature of interest” has the minimum

number of samples, or the image will not be reconstructed perfectly.

Processing an image repeatedly with scaled filters seems very wasteful on the face

of it. If a given resolution suffices for the smallest basis function, then a higher reso-

lution is unnecessary for the scaled up basis functions. Adelson et al [1] recognized

that a single filter applied to a set of scaled images produces the same result as scaled

filters applied to a single image. The Laplacian pyramid, which they devised and

which embodies this approach, uses a Gaussian basis function. The filter is applied

to the input image, which is repeatedly scaled by downsampling. Thus, the same

filter is applied to the same image at progressively larger scales.

In detail, the Laplacian pyramid transform works as follows. A low-pass Gaus-

sian filter blurs the input image before it is downsampled to produce a low-pass

subband. The low-pass subband image is then upsampled and passed through a

low-pass interpolation filter. The interpolated result is subtracted from the original

image and stored as the high-pass subband. The low-pass subband is processed by

the next pyramid stage, where it is again downsampled and filtered to produce the

next low-pass subband. To synthesize the input image from its Laplacian pyramid

5



Chapter 1. Introduction

representation, each stage is reconstructed by upsampling the previous low-pass sub-

band image, filtering it with the interpolation low-pass filter, and adding the resulting

image to the high-pass subband image stored in the next stage of the pyramid. The

process continues until the pyramid is exhausted, leaving the original image.

The diagram in Figure 1.2 shows a Laplacian pyramid as presented by Simoncelli

and Adelson [24] in an article on subband transforms. The dot labeled as w0(n) rep-

resents the next recursive stage, replicating the function of the entire diagram. As

Figure 1.2: Laplacian pyramid block diagram

Adelson points out [1, 24], the pyramid reconstructs the original image exactly, inde-

pendent of the choice of filters, since the pyramid stores the difference of the image

and the upsampled and interpolated reconstruction of the next stage. Most pyramid

designs depend upon closely matched filters for accurate image reconstruction, so

the Laplacian pyramid is unusual in that respect.

As discussed previously, wavelet transforms use basis functions with compact

support in both the space and transform domains. That is, a feature that is well

localized in the space domain will also be well localized in the transform domain. A

6



Chapter 1. Introduction

wavelet function is designed to match a particular type of feature, such as a line or

edge, with a very few basis functions. Since the action of the transform occurs at a

particular scale, and it is necessary to analyze the image for similar features at larger

and smaller scales as well as different locations, wavelet functions are derived from

a single prototype function by dilation and translation [5].

Dyadic wavelet transforms, that is, wavelet transforms whose basis functions

scale by a factor of two, lend themselves to pyramid decompositions. Pyramid im-

plementations of orthonormal wavelets in particular have proven useful in encoding

applications [22]. The chief advantage of the orthogonal wavelet pyramid is that

it can be implemented very economically. The transformed image contains exactly

the same number of pixels as the input image, and the transform is self-inverting.

Orthogonality is achieved by downsampling and filtering both the low and high fre-

quency subbands [5]. Downsampling the high frequency subband introduces aliasing.

However, the orthogonal transform is designed to ensure that aliasing errors from all

the subbands cancel upon reconstruction of the image. Image coding and transmis-

sion applications can tolerate subband aliasing, so long as the image is reconstructed

accurately. Other applications require aliasing-free subbands so that each subband

can be processed accurately and independently of the others.

As demonstrated by Simoncelli et al [22], subband aliasing transfers information

among subbands when the input signal is shifted by translation, dilation, or rotation.

In order to avoid this, the transforms must abandon orthogonality. In fact, orthogo-

nality, and with it, critical sampling, can no longer be tolerated. Applications which

must avoid subband aliasing require sampling at a rate in excess of the Nyquist rate.

This thesis describes the implementation of steerable pyramids. These filter struc-

tures depend on shiftability in angular orientation and must utilize low-pass filters

at each decomposition stage to eliminate aliasing from downsampling. Because the

transforms are shiftable in orientation, a set of basis filters can synthesize a filter

7



Chapter 1. Introduction

with any desired orientation. This property is termed steerability . We present two

steerable pyramid designs to illustrate the problems encountered in designing and

implementing steerable pyramids. The first pyramid figures prominently in Simon-

celli’s paper on shiftability [22]. This paper shows that a shiftable pyramid must

use the Nyquist sampling rate at each stage and explains how and why steerable

filters function. The second pyramid uses filters developed by Karasaridis and Si-

moncelli [10] to illustrate a technique to filters that accurately meet pyramid design

constraints.

More to the point, this thesis describes the implementation of the two pyramids

with filters defined on hexagonal grids. Filters can be constructed from general

specifications by calculating each hexagonal grid point of the basis function (referred

to as the kernel or impulse response in the following) from one-dimensional transfer

functions. Alternatively, filters on a hexagonal grid can be copied from existing filter

kernels on a rectangular-grid by resampling the kernels. Future work with pyramids

using hexagonal filters will be able to use our results to produce accurate filters with

little effort.

1.2 Hexagonal Sampling

The pyramid analysis framework simplifies the use of steerable filters in a number of

image processing applications, including local orientation analysis, corner identifica-

tion, noise suppression, oriented feature enhancement, shape from shading analysis,

and others [7, 22]. It is our opinion that these applications can benefit from the

increased angular resolution and computational economies that the use of hexagonal

sampling grids promises.

The general sampling theorem developed by Mersereau [14] depends on the pe-

riodic extension of a band limiting region R. This requirement is analogous to the

8



Chapter 1. Introduction

observation [5] that sampling a function on a square grid amounts to convolving it

with the Shah function, so that the Fourier transform of the function is replicated

over the entire frequency plane at intervals of 1/τ , where τ is the sampling interval.

If the function is sampled at the Nyquist rate or higher, its band limiting regions

will not overlap. The Fourier transform of the analogous sampling function for a

hexagonal grid covers the frequency plane with hexagons. The sampling theorem

states that if a two-dimensional function contains no frequency components outside

one such hexagon R, then it can be perfectly reconstructed from samples taken on

the corresponding sampling grid. From the preceding arguments it is clear that R

must be chosen such that it represents a single period of a periodic function. That

is, translated copies of R must cover the Fourier plane with no overlaps and no gaps,

thereby tessellating the plane. Mersereau calls this an admissible tiling . Regular ad-

missible tilings cover the plane with congruent polygons. Only squares, equilateral

triangles, and regular hexagons can tile the plane with a regular tesselation [8, 14].

Other admissible tilings are possible, using for instance, irregular or non-convex poly-

gons, but finding the corresponding sampling strategies presents a challenge beyond

the scope of this thesis.

The hexagonal grid possesses the highest possible symmetry of any regular sam-

pling geometry, and the implications of that fact motivate this thesis. A hexagon

offers 12-fold redundancy in coefficients as opposed to the 8-fold redundancy of a

square, or the 6-fold redundancy of a triangle. Figure 1.3 illustrates the respective

symmetries for an equilateral triangle (D3 symmetry), a square (D4 symmetry) and

a hexagon (D6 symmetry). The symmetry group names denote “dihedral” sym-

metry, in which each bisecting line in the diagram represents a plane of reflection.

In applications where symmetry is important, the redundancies due to symmetry

equate to savings in computational work. The high order of symmetry produces

related benefits. One important advantage of the hexagonal grid is that each point

has six nearest neighbors equidistant from it, as opposed to a point in a square grid,

9



Chapter 1. Introduction

Figure 1.3: Possible symmetries for regular tilings.

which only has four equidistant nearest neighbors. Each of the nearest neighbors in

a hexagonal grid aligns on an axis which contains samples spaced at the minimum

sampling interval, so that there are three of these axes compared to only two such

axes for the square grid. These properties of the hexagonal grid lead one to suspect

that it offers higher angular resolution and thus smaller aliasing errors for image

features not aligned with an axis. Therefore, diagonal features appear cleaner to the

eye when sampled hexagonally without the “jags” usually seen in images sampled on

a square grid. Importantly, applications which depend on the accuracy of local ori-

entation measurement can be expected to benefit from the higher angular resolution,

as well.

10



Chapter 1. Introduction

The hexagonal grid provides the highest number of samples for a given nearest

neighbor distance, i.e., the highest sampling density . Equivalently, the hexagonal

grid allows the highest nearest neighbor distance for a given number of samples in a

given area. Mersereau [14] points out that exact reconstruction of a circular region

using a hexagonal grid requires 13.4 percent fewer samples than with a rectangular

grid. He also notes that having six nearest neighbors all of which are equidistant as

opposed to only four equidistant neighbors for the rectangular grid can facilitate clus-

ter separation (deciding which points belong to which cluster, if any) and boundary

tracing applications.

Middleton and Sivaswamy [15] claim that hexagonal sampling together with

hexagonal pixels can improve the appearance of curves and diagonal edges to the

human eye. Figure 1.4 presents the famous “lena” image resampled on a hexagonal

grid and where each sample is rendered by a hexagon. Facial contours and diagonal

edges indeed appear to conform to what the eye expects with relatively little artifacts

due to the sampling geometry. The enlarged portion of the image reveals the struc-

ture of the sampling pattern. Curved areas appear to be well filled, and diagonals

do not display the jagged appearance associated with use of a rectangular grid. In

contrast, the enlarged rectangularly sampled image in Figure 1.5 exhibits artifacts

readily apparent to the eye and which are pronounced on diagonals and curves.

As a final note, it is well known that hexagonal patterns occur in natural vision

systems such as the compound insect eye [14]. Hexagonal packing places the highest

number of sensors within an area for a given sensor size than is possible with any

other arrangement, thus increasing sensor redundancy. It is also possible that the

neural processing of visual data benefits from the high order of symmetry offered by

hexagonal sampling. Discovering the signal processing in these natural systems is of

course a worthwhile end in itself. As in other technical fields that have benefitted

by emulating natural systems, it is likely that signal processing as well as pattern

11



Chapter 1. Introduction

Figure 1.4: Hexagonally sampled image with hexagonal pixels

recognition could gain by adopting the designs that have resulted from millions of

years of natural selection.

1.3 Thesis Overview

This thesis will present the detailed implementation of steerable pyramid image de-

compositions using image data sampled on hexagonal grids. In order to illustrate

12



Chapter 1. Introduction

Figure 1.5: Expanded rectangularly sampled image

specific issues involved in designing pyramid algorithms, Chapter 2 will compare

two designs taken from papers by Simoncelli and others [10, 22]. The first of these

papers introduces the theory behind shiftable steerable pyramids, while the second

describes a general method for designing filters for use in steerable pyramids. The

filters developed in the latter paper serve as standards for reconsruction accuracy.

The third chapter deals with computation and implementation of hexagonal filters

from general design specifications or from existing filters when a performance com-

parison is required. In this thesis we use both analytical (polar Fourier transform)

13



Chapter 1. Introduction

[13, 23] and resampling [12, 13] methods for computing filter coefficients. While the

analytical method does not require detailed consideration of hexagonal sampling or

Fourier transformation on the hexagonal grid, the second class of methods requires

both. Therefore, hexagonal sampling and Mersereau’s [14] Hexagonal Fast Fourier

Transform (HFFT) are discussed in Chapter 3.

The research described in this thesis uses steerable filters that are separable in

polar coordinates. The two-dimensional transfer function results from multiplying a

radial transfer function by the desired angular transfer function [3, 7]. A filter kernel

may be derived from the inverse Fourier transform of this product. It may also be

derived analytically by summing the inverse polar Fourier transform for each term of

the Fourier series of the angular function. In general, it is expected that the accuracy

of the oriented filter is limited by the accuracy of the radial filter upon which it is

based, since the angular function comprises a known and usually small number of

Fourier terms. Surprisingly, this is not always the case. The fourth chapter will

discuss the relationship between pyramid design, filter design, and reconstruction

accuracy. Reconstruction accuracy depends on the accuracy of the filter set, which

depends in turn on pyramid requirements. The tradeoffs involved and a curious

synergy will become apparent.

Hexagonal sampling places six neighbors around a given point, giving an angular

interval of 60 ◦. In contrast, square sampling surrounds each point with only four

nearest neighbors, giving an angular interval of 90 ◦ between them. This fact leads

to the supposition that the hexagonal sampling geometry represents small angles

more accurately than square sampling. Chapter 5 presents a simple application

that attempts to exploit this property of hexagonal filters to produce a measurable

improvement over rectangular filters in removing noise from an image.

14



Chapter 2

Two Steerable Pyramids

2.1 Pyramid Processing Structures

The two pyramids which we describe in this thesis share a common structure but

differ in the filters they employ. The following brief description of the pyramid

design applies to both. Both start with an initial high-pass filter operation that

subtracts a low-pass filtered image from the original image. The image is processed

twice by the low-pass filter so that the result, when subtracted from the original

image, achieves power complementarity with the pyramid output. The high-pass

filtered image that results comprises the first level of the pyramid, while the input

image low-pass filtered only once serves as input to the next stage of the pyramid.

For each succeeding stage of the pyramid, the input image is processed by both a

set of oriented band-pass filters and the anti-aliasing low-pass filter used at each

stage. The low-pass filtered image again serves as input to the next pyramid stage,

while the images output from the oriented band-pass filters represent the transform

result for the current pyramid level. When the desired number of decompositions

is reached, the application can perform any desired processing on the stored band-

15



Chapter 2. Two Steerable Pyramids

passed images. The original image can be reconstructed from the transform images

stored in the pyramid by upsampling the lowest image in the pyramid, convolving it

with the inverse of the low-pass filter used in downsampling, and then adding it to

the band-passed image at the next level of the pyramid. The same reconstruction

procedure could be applied to the pyramid after processing one or more of its images

with some operation such as wavelet coring for noise reduction, thus producing an

enhanced image.

Each stage of a pyramid comprises a filter bank which analyzes an input image

into basis images representing the transform of the scaled image with a basis func-

tion. The original image is reconstructed using another set of filters that invert the

transforms and synthesize the input image by combining the filter outputs. Thus,

a pyramid transform and its inverse is usually depicted with a diagram showing a

set of analysis/synthesis filter banks. Accurate image reconstruction requires that

each stage of the pyramid must be self-inverting in the sense that processing the

signal through both the analysis filters and the synthesis filters that invert them

results in a signal at the output that closely resembles the signal at the input. In

the following, we will refer to the pyramid presented in the Simoncelli, et al paper

on shiftability [22] as the original shiftable pyramid . The pyramid presented in the

paper by Karasaridis and Simoncelli [10] will be designated the standard shiftable

pyramid . The desired action of each stage for the original shiftable pyramid is to

filter the image with the overall system transfer function. The standard shiftable

pyramid requires constant power response for each stage over the frequency range of

interest.

The wavelet transforms implemented by both pyramids are overcomplete by a

factor of 4/3 for filters with circular symmetry. That is, the number of coefficients

in the pyramid representation is 4/3 times the number of values in the input image

[22]. The size of the pyramid representation is a power series in four, so that the

16



Chapter 2. Two Steerable Pyramids

total number of coefficients in the representation is approximately 4/3 the number

of values in the input image. A steerable pyramid with four oriented basis functions

per stage would have an overcompleteness factor of 16/3, since each band-pass filter

would be replaced by four oriented band-pass filters. However, to analyze the entire

pyramid, we observe that the transforms from the oriented band-pass filters are

inverted and combined to form a single band-passed image transform, so that the

overcompleteness of the pyramid representation can be regarded as 4/3 at each stage.

Since the transform is overcomplete, it doesn’t offer the efficiency of an orthogonal

transform, and the question arises as to its invertibility. Simoncelli et al [22] prove

that a transform that is shiftable and has an overall power response that is constant at

each stage is not only invertible, but is self-inverting. The property of self-invertibility

requires the transform to be a tight-frame. The fact that the transform is a tight-

frame implies two more interesting facts. One is that the inverse must be scaled by

the inverse of the overcompleteness factor. The other is that the inverse transform is

the transpose of the transform [6]. The overcompleteness factor must be compensated

in practice by scaling the reconstructed image at each stage by a factor of 1/4. This

is equivalent to observing that the synthesis stage image must be multiplied by 1/4

in order to compensate for upsampling, which multiplies the intensity of the image

by 2 in each direction. The total intensity of the final reconstructed image is thereby

multiplied by 4/3, thus compensating for the inherent transform scaling factor of

3/4.

Self-invertibility imposes constraints on the transfer functions of the component

filters. The accuracy with which the filters meet these constraints determines the ac-

curacy of the reconstructed image. Simoncelli et al [22] show that the self-invertibility

of the stage implies the self-invertibility of the component filters in that the sum of

their power responses must be the desired power response of the stage over the

frequency range of interest. That is, they are power complementary . The power

17



Chapter 2. Two Steerable Pyramids

complementarity equations define one of the constraints on the pyramid filters at

each stage and will be presented in the following sections with their respective pyra-

mid descriptions. These equations show that the filters are designed so that they

are inverted by their conjugate transposes. The radial filters are purely real and

symmetrical, so that they are self-inverting. The oriented filters are either purely

real or purely imaginary and so are inverted by their transposes.

Figure 2.1 presents a system diagram of the recursive analysis/synthesis filter

bank. This diagram is adapted from Karasaridis and Simoncelli [10], and applies to

both pyramid designs. The small box containing the black dot represents the next

(recursive) stage of the pyramid, and can be pictured as containing a copy of the

diagram within the dashed box.

Figure 2.1: Block diagram of pyramid decomposition

An important and necessary consequence of shiftability is that any value of the

sampled function may be derived from the values of surrounding sampled points by

interpolation. That a set of basis functions is shiftable in angular orientation means

that a filter with arbitrary angular orientation can be constructed by interpolating

from sampled values of the transfer function of the basis filters that span them.

18



Chapter 2. Two Steerable Pyramids

Thus, a kernel that produces a transfer function with an arbitrary orientation can

be constructed by adding kernels representing the oriented basis filters multiplied

by appropriate interpolation coefficients. Computing a set of coefficients for each

element of the input image allows the application to steer the resulting oriented

filter on the fly and continuously.

The interpolation functions that are used to combine the basis filters depend

only on the order of the angular function, i.e., of the polynomial that can be used to

represent the function as a sum of Chebyshev polynomials. For instance, a simple

angular function [22], such as H(θ) = i cos3(θ) is usually chosen. This function is

of order three, and it has four interpolation functions and four basis functions. The

interpolation functions are, from Freeman and Adelson [7]

kj(θ) = 2

[
cos

(
θ − (j − 1)π

4

)
+ cos

(
3

(
θ − (j − 1)π

4

))]

In general, the interpolation functions are, for j = 1, ..., N + 1:

kj(θ) =
2

N + 1

(N−1)/2∑
i=0

cos

[
(2i + 1)

(
θ − (j − 1)π

N + 1

)]
, for N odd (2.1)

=
1

N + 1

1 + 2
N/2∑
i=1

cos

[
2i

(
θ − (j − 1)π

N + 1

)] , for N even. (2.2)

The basis functions are derived from the same function rotated by multiples of

π
N+1

. To obtain the kernels by inverse Fourier transform, it is necessary only to

multiply a radial transfer function by the desired angular transfer function and then

perform the transform. Both Simoncelli, et al [22] and Freeman and Adelson [7] favor

multiplication in the frequency domain followed by inverse Fourier transformation

to produce oriented kernels. However, a different approach exploits the fact that the

inverse polar Fourier transform of a polar separable transfer function is an impulse

response which is also polar separable in a useful sense. That is, each term of its

19



Chapter 2. Two Steerable Pyramids

expansion as a Fourier series in the angular function is polar separable. Stein and

Weiss [23] show that if f0(r) is a circularly symmetric function, z = reikθ, and

f(z) = f0(r)e
ikθ,

then the Fourier transform of f(z)

f̂(w) = F0(R)eikφ

F0(R) = 2π(−i)k
∫ ∞

0
f0(r)Jk(2πRr)rdr, (2.3)

where w = Reiφ, F0(R) is the radial component of the polar separable Fourier trans-

form function f̂(w), and Jk(x) is the kth order Bessel function of x. The transform

is self-inverting, since the inverse Fourier transform is obtained by changing the sign

of the Bessel function order and the power of the imaginary factor. These changes

produce the same expression as the forward transform. The impulse response for the

ith oriented basis function is computed by applying the preceding transformation

to each term of the Fourier expansion of the angular function and multiplying it by

cos(k(θ − θi)), where θi is offset angle of the i-th basis function and k is the order

of the Fourier term. Further details of implementing the analytical impulse response

calculation will be presented in Chapter 3.

The analytical method described in Chapter 3 offers the advantage of computa-

tional clarity and accuracy that is limited only by the size of the kernel. Unfortu-

nately, for a given accuracy, the analytical method produces kernels that are larger

than can be obtained by other methods. Use of larger kernels not only results in

an increased computational load, but the edge effect that results when the kernel

approaches the image in size limits the number of decomposition levels from which

an image can be reconstructed.

The two pyramid transforms presented here differ in the methods used to design

their component filters as well as the constraints they impose. The first design

emphasizes band limiting to obtain oversampling of the input and effective invariance

20



Chapter 2. Two Steerable Pyramids

to translations and rotations of the input image. Requirements imposed on the low-

pass filters determine the constraint on the band-pass filter, and it requires only

a single computation to determine its ideal transfer function. Given the size of

kernel desired and this transfer function, an optimization procedure can be used to

determine the impulse response [22]. The second pyramid transform comes from a

paper that presents a method of designing filters for pyramid transforms [10] that

produces the required frequency responses by an iterative design procedure that

minimizes filter errors over the frequency range of interest. The resulting filters are

posted online by Simoncelli [20]. Their availability and quality suggest their use as

a standard for comparing reconstruction accuracy, and they were used that way in

this study. These filters implemented on a rectangular grid achieved variance errors

as low as -63.6 dB. Results for the same filters on a hexagonal grid approached this

level of accuracy and exceeded it in some cases.

2.2 Original Shiftable Steerable Pyramid

Simoncelli, et al [22] developed a shiftable steerable pyramid design. This over-

sampled transform, while not completely translation invariant, avoids transferring

energy between subbands upon translation or rotation of the input image. Thus,

each subband can be processed independently without introducting aliasing. Just

as importantly, exact interpolation between translated or rotated samples follows

from shiftability. For steerable filters, this means that an oriented filter of any de-

sired orientation can be constructed from a small number of basis filters at fixed

orientations.

As stated in the Introduction, the transfer function of any two-dimensional band-

pass filter is assumed to be polar separable, so that its angular component can be

designed and implemented separately from its radial component. A one-dimensional

21



Chapter 2. Two Steerable Pyramids

specification can describe the radial component of the transfer function, and oriented

filters can be derived by multiplying the radial transfer function by the angular

function desired. Since the reconstruction of the oriented basis images equates to

the image obtained by processing the input image with a circularly symmetric band-

pass filter, the pyramid constraints apply to this filter and to the low-pass filters,

which are also circularly-symmetric.

The constraints of this pyramid transform permit very straightforward filter spec-

ifications. The transform differs from the transform represented by the second pyra-

mid in that a single stage of the pyramid recursion acts as a low-pass filter, and the

entire system has the same response as a single stage. The overall system response

L0(ω), has a power spectrum |L0(ω)|2 that is simply the sum of the band-pass filter

power |B(ω)|2 and the system response of the next lower recursion stage after it has

been passed through the recursion low-pass filter L1(ω).

|L0(ω)|2 = |B(ω)|2 + |L1(ω)|2|L0(2ω)|2 (2.4)

In the preceding equation, |B(ω)|2 is the sum of the powers |B0(ω)|2 and |B1(ω)|2 of

the oriented filters shown in the diagram. The L0(ω) system response at each stage

filters out aliasing that results from downsampling, so that the L1(ω) response can

be implemented by a relatively simple filter. The authors used

[
1 6 15 20 15 6 1

]
/64

as the kernel for L1(ω). They specified the overall system response L0(ω) indepen-

dently as a filter that has unity response from ω = 0 to ω = π/2 radians and zero

response at ω = π. Simoncelli et al [22] used the Parks-McClellan algorithm, im-

plementations of which may be found online [2], to find the thirteen-tap low-pass

filter which most nearly satisfies these criteria. This thesis used the online algorithm

to find a similar low-pass filter which most nearly satisfies the stated criteria. The

22



Chapter 2. Two Steerable Pyramids

Figure 2.2: Initial low-pass filter L0 for original shiftable pyramid.

transfer function produced by a ten-tap filter resulted in two-dimensional filters with

good accuracy for either method of filter construction used by this thesis. Figure 2.2

and Figure 2.3 show the respective transfer functions L0(ω) and L1(ω).

Given the two low-pass filters, L0(ω) and L1(ω), the band-pass filter transfer

function B(ω) is fully determined. Unfortunately, the required transfer function,

shown in Figure 2.4, is difficult to realize with compact support. The authors used

the Nelder-Mead [17] simplex optimization method to find a fifteen-tap filter whose

transfer function matches the ideal transfer function to within approximately 3.5

percent in power. As described in Chapter 3, two different methods yield a band-

pass filter with similar performance. Figure 2.5 shows the two low-pass kernels and

the radial band-pass kernel used in this thesis for the original shiftable pyramid.

Once the three one-dimensional filters have been designed, they can be used to

specify cross-sections of circularly symmetric two-dimensional filters and tested for

accuracy. Chapter 3 presents two methods for converting a one-dimensional kernel

23



Chapter 2. Two Steerable Pyramids

Figure 2.3: Recursion low-pass filter L1 for original shiftable pyramid.

into a two-dimensional kernel. The central cross-section of the circularly symmetric

transfer function produced by the two-dimensional kernel is the transfer function

of the one-dimensional kernel. The two-dimensional kernel can be derived from the

Figure 2.4: Band-pass filter B for the original shiftable pyramid.

24



Chapter 2. Two Steerable Pyramids

Figure 2.5: Kernels for L1, L0, and radial BP .

one-dimensional transfer function by numerical integration of the of the polar Fourier

transform or by Fourier transforming the result of frequency resampling the two-

dimensional transfer function. The latter is best accomplished by computing samples

of the transfer function on a hexagonal grid from a one-dimensional transfer function.

Chapter 3 describes the numerical integration in detail and proposes the McClellan

frequency transformation as the preferred technique for producing a resampled two-

dimensional transfer function.

2.3 Standard Shiftable Steerable Pyramid

The second steerable pyramid design comes from a paper by Karasaridis and Si-

moncelli [10] that presents a design technique for filters used in steerable pyramid

transforms. Kernels derived for it are available online at [20]. The site’s author

warns that the filters supplied with the C code “are not very accurate,” but they

appear identical to those supplied with the same application written in Matlab code

and which are supplied without this qualification.

Karasaridis and Simoncelli [10] present a pyramid whose circularly symmetric

filters on a rectangular grid achieve a image reconstruction error measured as -63.6 dB

25



Chapter 2. Two Steerable Pyramids

variance. The same pyramid with steerable filters achieves reconstruction accuracy

comparable to that reported in the source paper. These comparatively good results

are achieved using relatively small kernels. Evidently, the method produces very

accurate filters, but they are obtained at the cost of multiple rounds of optimization

[10]. For this thesis, we decided to simply copy the available filters rather than use

the design technique. Chapter 3 presents the details of how the filters are adapted

from a rectangular grid to a hexagonal grid.

The second pyramid design shares the overall structure of the first, but the de-

tailed design of the filters differs in important respects. The filter design procedure

for the second pyramid produces filters that match the pyramid requirements accu-

rately with compact support. The first pyramid, by way of comparison, also uses

relatively small kernels, but its accuracy is not as good.

As with the first pyramid, the image is low-pass filtered before being downsampled

and delivered to the next stage. The image is filtered a second time with the initial

low-pass filter and subtracted from the original image. The difference image, which

is put onto the top of the pyramid, is power complementary to the image returned

by the last stage of the synthesis filter when the image is reconstructed, since the

low-pass filter is applied once during the decomposition and again as the final step

in reconstruction. Rather than low-pass filtering and differencing with the original

image, the image could instead have been passed through a complementary high-pass

filter. However, that method was not used for this work.

The downsampled image is processed by a set of oriented band-pass filters and by

the anti-aliasing low-pass filter that is used at each stage. The outputs of the band-

pass filters constitutes the subbands that are stored for the current stage, just as for

the “original shiftable” design. The low-passed image continues to downsampling

and the next stage.

26



Chapter 2. Two Steerable Pyramids

The constraints on the filter transfer functions are as follows, where L0(ω) repre-

sents the response of the initial low-pass filter, L1(ω) represents the recursive low-pass

filter, and B(ω) represents the band-pass filter, or equivalently, the square root of

the sum of the oriented band-pass filter power responses:

|L0(ω)|2[|L1(ω)|2 + |B(ω)|2] = 1

|L1(ω/2)|2[|L1(ω)|2 + |B(ω)|2] = |L1(ω/2)|2

L1(ω) = 0, for |ω| > π/2.

The last condition is necessary in order to suppress aliasing due to downsampling of

the image. As an additional condition, L0(ω) is set equal to L1(ω/2), since L1(ω/2)

acts as the initialization filter L0(ω) for each recursive stage.

In contrast to the first pyramid, which presented the same low-pass filter transfer

function at each stage, this pyramid presents a constant transfer function up to

the cut-off frequency of the initial low-pass filter. Above that frequency, the transfer

function is irrelevant. The recursive low-pass filter and the band-pass filter are power

complementary to one another within this frequency range, and the band-pass filter

transfer function above this cutoff is unconstrained and can be implemented using any

convenient filter kernel with the required transfer function below the cutoff frequency.

Figure 2.6 through Figure 2.8 show the transfer functions of the filters. Figure 2.9

shows the kernels for these three filters. Figure 2.10 shows the sum of the squared

amplitudes of the recursive low-pass filter and the band-pass filter.

The set of filters for this standard shiftable pyramid served as a benchmark for

reconstruction accuracy in evaluating the filter implementation techniques described

in this thesis. As will be shown in Chapter 4, reconstruction accuracy on a hexag-

onal grid approaches the accuracy reported in [10] and measured here for the same

filters implemented on a rectangular grid. Chapter 4 presents measurements of re-

construction accuracy for both pyramid transforms, using filters constructed with

27



Chapter 2. Two Steerable Pyramids

Figure 2.6: Initial low-pass filter L0 for standard shiftable pyramid.

both methods, and with various kernel sizes.

Figure 2.7: Recursion low-pass filter L1 for standard shiftable pyramid.

28



Chapter 2. Two Steerable Pyramids

Figure 2.8: Band-pass filter B for standard shiftable pyramid.

Figure 2.9: L0, L1, and radial BP kernels for standard shiftable pyramid.

29



Chapter 2. Two Steerable Pyramids

Figure 2.10: Power sum of band-pass and recursion low-pass filters.

30



Chapter 3

Filter Implementation

3.1 Overview

Image processing pyramids require two-dimensional filters, and these filters, for rea-

sons of design simplicity, are usually polar separable in steerable pyramids. There-

fore, filter design typically begins by specifying the one-dimensional cross-section of a

circularly symmetric transfer function representing the radial component of the two-

dimensional transfer function. Figure 3.1 shows a block diagram for the two methods

used in this thesis for constructing kernels for circularly symmetric filters. Oriented

filters needed for steerable pyramids result from multiplying a radial band-pass filter

and a localized angular function.

The second, standard shiftable pyramid design employs filters that perform ex-

ceptionally well in terms of reconstruction accuracy and whose coefficients are readily

available. These filters present an obvious choice for a comparison standard when

gauging the reconstruction accuracy of any new implementation, but filter functions

must be somehow interpolated from a rectangular sampling grid and resampled onto

a hexagonal sampling grid. It might seem that interpolation and resampling of an

31



Chapter 3. Filter Implementation

Figure 3.1: Two kernel construction methods for circular filters.

existing two-dimensional transfer function would produce satisfactory results, but

this turned out not to be the case. Methods that produce two-dimensional filters

from one-dimensional cross sections worked consistently better.

This chapter addresses filter “implementation” rather than “design,” since the

specifications for the filters are either strictly constrained by the pyramid transform

requirements, as discussed in the preceding chapter, or the filters are derived from

an existing design. Therefore, the procedures discussed in the following begin with

existing one-dimensional transfer functions, and then compute the filter kernels on a

hexagonal grid with the constraint that the transfer function is circularly symmetric.

Two different filter construction methods are presented in this chapter. The first

32



Chapter 3. Filter Implementation

computes the two-dimensional filter kernel from a one-dimensional transfer function

using the analytical polar form of the Fourier transform. The second method em-

ploys the McClellan frequency transformation to convert a one-dimensional transfer

function with compact support into a two-dimensional transfer function on a hexag-

onal sampling grid. The advantage of the McClellan transformation over direct

computation of the kernel lies in the controlled relationship between the size of the

output kernel and the size of the input kernel. The hexagonal form of the circularly

symmetric McClellan transformation is described in Mersereau [14].

This thesis omits two other methods that should work in this application [4].

The first method would sample a one-dimensional transfer function to produce a

circularly symmetric hexagonally-sampled two-dimensional transfer function. The

inverse hexagonal Fourier transform would then produce the two-dimensional im-

pulse response, or kernel. This method would result in the same kernel as produced

by direct analytical computation, but the poor performance of available hexagonal

FFT implementations makes direct computation more attractive. The McClellan

transformation takes a one-dimensional transfer function as input and returns a two-

dimensional transfer function. Because the McClellan transformation can be consid-

ered to be applied to each term of a cosine series expansion of the one-dimensional

transfer function, a one-dimensional transfer function with compact support will be

converted to a two-dimensional transfer function that also has compact support.

Thus, both direct computation and the McClellan transformation offer important

advantages over this simple frequency domain resampling technique.

The second method avoids kernel computation altogether by filtering in the fre-

quency domain. The analysis filter banks would first Fourier transform both the

image and the filter impulse response and then multiply the two transforms element

by element. The product is inverse transformed to obtain the desired subbands. The

synthesis filter bank would use the same filtering algorithm to reconstruct the image.

33



Chapter 3. Filter Implementation

Frequency domain filtering is generally preferred [4, 5, 14] where high-performance

Fast Fourier Transforms (FFTs) are available. As just mentioned, no efficient im-

plementations of hexagonal FFTs exist at this time. Even though hexagonal FFT

simulation [9] or triangular FFT algorithms [18] might serve the purpose, their study

is beyond the scope of this thesis. As a consequence, this thesis limits its discussion

to filters implemented by convolution in the space domain.

Direct analytical computation of kernel values, or taps , needs only the distance

of the kernel tap from the origin. Thus, we can specify a set of distances from the

kernel center that are based on the spatial arrangement of taps for a hexagonal kernel

of predetermined size and obtain values for each tap in the kernel. We can obtain

oriented filters by multiplying the kth order radial function for a given kernel (see

Equation 2.3) by the desired kth order angular function in the space domain. This

method seems ideal from the standpoint of computational simplicity and accuracy.

Indeed, it returns a mathematically exact impulse response for a given filter. Unfor-

tunately, the size of the truncated impulse response needed to produce for a filter

with the required accuracy may be unacceptably large. This is particularly true for

oriented filters. As the complexity of the angular function increases, so does the order

of the Bessel function in its radial component and the number of values that must

be included in the kernel. Other methods of kernel construction, e.g. resampling,

must be employed if kernel size is to be managed.

Resampling the transfer function followed by inverse Fourier transformation can

produce relatively small filters with good accuracy. The McClellan frequency trans-

formation preserves the desirable characteristics of a one-dimensional Finite Impulse

Response (FIR) filter by transforming it into a similar two-dimensional FIR filter.

The basic approach, which a section to follow presents in detail, is to substitute

an expression in two frequency variables for the original expression in a single vari-

able. The form of the transformation determines the shape of the resulting frequency

34



Chapter 3. Filter Implementation

contour. Transformations that produce a circularly symmetric transfer function are

well-known, and it is common practice is to use them [13, 14]. However, the de-

tails of formulating a McClellan transformation may be found in a number of places

[12, 13, 14], and these can be consulted if there is a need to calculate the transfor-

mation, e.g. for a non-circularly symmetric transfer function.

The main disadvantage in using the McClellan transformation or any other fre-

quency domain resampling technique is that it does not directly produce the desired

impulse response. In order to obtain the impulse response, it is necessary to perform

an inverse Fourier transform. For rectangular coordinates, there are a number of very

good tools available (e.g., Octave/Matlab) to compute inverse Fourier transforms.

For the hexagonal grid, the computation is not separable, and a new hexagonal Dis-

crete Fourier Transform (DFT) and Hexagonal Fast Fourier Fransform (HFFT) must

be derived. Fortunately, Mersereau [14] has long since solved this problem, and a

fairly efficient, if slow, implementation of the HFFT is available. This chapter de-

votes a section to a brief development of hexagonal sampling, the HFFT, and some

techniques and tools for building filters on hexagonal grids.

3.2 Polar Fourier Transform (Analytical) Method

As suggested in the preceding overview, direct computation of a two-dimensional

filter’s impulse response from a specified transfer function offers some advantages

over other approaches. One is that the resulting impulse response is accurate, since

it is an exact Fourier inverse of the transfer function. Another is that an oriented

kernel can be computed in the space domain from circularly symmetric functions.

This fact implies that the accuracy of an oriented filter should be no worse than that

of the circularly symmetric filter from which it is derived, since the computation

involves only pointwise multiplication with an exact angular function.

35



Chapter 3. Filter Implementation

Using the directly computed impulse response, it is possible to obtain an arbitrary

degree of filter accuracy by including the requisite number of taps in the impulse

response. That is, by using a sufficiently large kernel, the filter can be made as

accurate as may be desired. On the other hand, obtaining accuracy with large kernels

may not be practical for pyramid image processing, since the cost of convolution rises

in proportion to the square of the kernel size and because kernel size limits the number

of decomposition levels. The latter limitation arises from edge effects that produce

large errors when the kernel size approaches the image size. Direct computation must

trade off accuracy against kernel size, since it offers no other means of controlling it.

We can visualize the filter kernel as an array with a center element, around which

the other elements are arranged in layers . For a hexagonal kernel, this is particularly

easy, since the hexagonal shape is so nearly circular. When the kernel is truncated

in order to limit its size, we specify a number of layers n to include and then build

the kernel at the n × n locations (some of which are redundant) that result from

computing the distance
√

i2 + j2, where i and j range from 0 to n− 1. A hexagonal

kernel is inscribed within a square array this way.

It seems reasonable that a directly-computed two-dimensional filter should require

about a number of layers equal to the number of taps possessed by the prototype one-

dimensional filter. In actuality, rough calculations indicate that the two-dimensional

kernel requires typically three more layers than the one-dimensional filter has unique

taps (see Figure 3.2). The calculation starts with Equation 2.3 and substitutes

the one-dimensional Fourier series expansion of the transfer function. Thus, for a

circularly symmetric filter,

h(ν) =
∫ ∞

0
[

N∑
n=1

h′n cos(nω) + 2h′0]ωJ0(ων)dω

=
∫ π

0
[

N∑
n=1

h′n cos(nω) + 2h′0]ωJ0(ων)dω

36



Chapter 3. Filter Implementation

if the transfer function goes to 0 for ω > π. To compute the amount of the n-th

input coefficient that contributes to the ν-th output coefficient,

C(ν, n) = h′n

∫ π

0
cos(nω)ωJ0(ων)dω

the integral can be computed numerically and the set of coefficients used to define

a matrix for future use. The radspread Matlab/Octave algorithm that produces

this matrix appears in the Matlab/Octave Code Appendix. The same basic algo-

rithm employing higher order Bessel functions produces similar coefficient matrices

pertaining to the size of directly computed oriented filters.

Figure 3.2: Influence of 1-D kernel values on circularly symmetric kernel values.

The following describes the detailed procedure for directly computing a circu-

larly symmetric filter kernel from a one-dimensional transfer function. Given a one-

dimensional transfer function H(R), the task is to compute the values of the impulse

response h(r) at the sampling locations dictated by the sampling geometry. It is

37



Chapter 3. Filter Implementation

important to remember that the sum computed for each tap value is derived from a

one-dimensional transfer function and has nothing to do with hexagonal sampling.

Only the specific values of r for which the impulse response is computed relate to

the sample position.

Hexagonal sampling requires the center row of the kernel to be sampled at unit

spacing with alternate rows at the same spacing but offset by 0.5. The rows are

spaced at
√

3/2 units from one another. To obtain the convolution kernel, it is

necessary only to compute h(r) for a finite set of values of r using either numerical

quadrature or a discrete summation on the sampled transfer function to compute

the integral expression. Either approach assumes that the transfer function is zero

for frequencies ω > π.

A circularly symmetric filter response H(R) has a corresponding circularly sym-

metric impulse response h(r) and is related to it by the following equation:

H(R) = 2π
∫ ∞

0
rJ0(2πrR)h(r)dr (3.1)

h(r) = 2π
∫ ∞

0
RJ0(2πrR)H(R)dR,

where J0(x) is the 0-th order Bessel function. This pair of one-dimensional equa-

tions represents the Fourier transform for a circularly symmetric function in polar

coordinates and is known as the Hankel transform [3, 5]. After replacing H(R)

and h(r) on the right hand side by their sampled values
∑

n H(R)δ(R − n∆s) and∑
n h(r)δ(r − n∆x), the preceding transform pair becomes:

H(R) = 2π
∞∑

n=0

h(n∆x)(n∆x)J0(2πRn∆x) (3.2)

h(r) = 2π
∞∑

n=0

H(n∆s)(n∆s)J0(2πrn∆s),

where ∆x is the sampling interval and ∆s is the corresponding frequency resolution.

The transfer function computed by Matlab or Octave from a given impulse response

38



Chapter 3. Filter Implementation

using its built in fft function returns an array of length N , where N is the size of

the requested transform. The maximum radian frequency is normalized to π, giving

a frequency resolution of ∆ω = 2π∆s = π
N

.

Setting ∆s = 1
2N

to achieve the desired frequency resolution, the discrete algo-

rithm becomes

h(r) =
N−1∑
n=0

H(n + 1)J0

(
πnr

N

)
nπ

N

where H(n+1) is the (n+1)-th point of the transfer function returned by Matlab, and

h(r) is the tap value at distance r from the center of the kernel. This approach is much

faster than numerical quadrature and yields the same result within approximately

2× 10−4 maximum absolute error.

There is no a priori reason to trust the formulation just given. In fact, its

accuracy depends on

Fpolar[h(r) ∗ g(r)] = Fpolar[h(r)] · Fpolar[g(r)]

being true. The approximation must be reasonably close, since the discrete summa-

tion produces results with less than 2×10−4 error for Bessel functions of up to order

6. For this reason, the discrete summation was used to compute radial kernels for

oriented filters as well as circularly symmetric filters.

A script for direct computation of the Hankel transform appear in the Mat-

lab/Octave Filter Code Appendix. The radialb function implements the discrete

Hankel transform and returns a matrix of filter taps. The kernel position for a tap

value may be computed from its location in the matrix. That is, the distance from

the kernel center that corresponds to a given value is equal to

r =

√√√√(3

4

)(
(i− 1) (mod 2)

2
+ i− 1

)2

+ (j − 1)2,

39



Chapter 3. Filter Implementation

where i and j are, respectively, the row and column indices of the matrix. The 512

point transfer function must be supplied as the first argument and is the first half

([0:511]) of a 1024-point vector computed using Matlab/Octave’s fft function.

The size of the output matrix must be entered as the second argument to radialb,

while the third argument specifies the order of the Bessel function in the integrand.

For radial filters, this argument is 0.

When constructing a low-pass kernel, it is only necessary to supply the 512 point

transfer function for the first argument. However, high-pass and band-pass filters

may not be band-limited in the sense of having 0 response for frequencies ω > π.

This situation invalidates the assumption of the DFT, namely that the integrand

falls to 0 past some frequency less than π. Fortunately, it is easy to get around this

difficulty by applying one of several available frequency transformation techniques

[13, 16]. The simplest of these is to normalize the transfer function to a peak value

of unity and then compute the impulse response equal to one minus the amplitude

of the transfer function. This produces the low-pass filter that is complementary to

the desired high-pass or band-pass filter. The desired impulse response is computed

from the impulse response of the complementary low-pass filter by changing the sign

of every kernel value and then adding one to the center tap of the kernel.

The exact impulse response h(r) has infinite extent, given finite support for the

one-dimensional transfer function. Thus, it can have as many non-zero coefficients

as the transfer function H(R). The kernel must be truncated to the minimum size

that yields the desired transfer function to some specified accuracy, in order to save

computational effort and maximize the number of decomposition levels that can

be accurately constructed. Accordingly, the pyramid starts with a matrix of filter

taps for all distances up to 42 samples (thirty layers) from the center. Using this

set of values represented as a STL map, the pyramid can generate a kernel of any

specified size up to thirty layers. This maximum size exceeds the size of any practical

40



Chapter 3. Filter Implementation

kernel for most applications, since edge effects for a thirty-layer kernel would degrade

reconstruction accuracy for a pyramid with more than three levels. The map, which

is equivalent to a hash or dictionary, is indexed on the square of the distance from

center since this value is always an integer.

Simoncelli, et al [22] provide a set of taps for the anti-aliasing low-pass filter

used at each pyramid stage. They give a general specification for the system low-

pass response and employ the Parks-McClellan procedure to design the filter from

the specification. A web site application [2] that implements the Parks-McClellan

algorithm was used in this work. We found a ten-tap filter that provided a set of

radial filters with better accuracy than attainable with similar thirteen-tap filters.

However, experiments with oriented filters using a filter set including a thirteen-tap

filter showed that very good accuracy can be obtained with this filter, as well.

The recursion relationship given in Equation 2.4 determines the band-pass filter

response, but the transfer function that results is difficult to reproduce with a com-

pact filter. In the paper on shiftable steerable pyramids [22], the authors specified a

fifteen-tap kernel and then used the Nelder-Mead simplex optimization method [17]

to find the impulse response that produced the smallest deviation from the desired

transfer function. Their result has a maximum power deviation of about 3.5%, or

up to 18.7% in amplitude. However, the full kernel produced by direct computation

produces a filter with the exact transfer function. Kernels that are truncated to some

degree produce filters with less accuracy. A seven-layer hexagonal kernel (embedded

in a 15× 15 square kernel) reconstructs sample images with about ten percent max-

imum error, but about thirteen hexagonal layers (27 × 27) are required to achieve

reconstruction accuracy on the order of one percent. For a 512 × 512 image, edge

effects with a thirteen-layer kernel would limit the number of levels to no more than

five.

C++ code for reading the tap map and converting it into a convolution kernel

41



Chapter 3. Filter Implementation

appears in the filterutils.cpp file provided in the Pyramid Code Appendix supplied

with this thesis on CDROM. This file also contains code for multiplying a kernel by

a cosine function of any specified integral angular multiplier and floating point offset.

These routines support direct space domain computation of oriented kernels. Using

distance ratios and trigonometric identities produces fast and accurate results and

avoids trigonometric angular computations.

3.3 Frequency Domain Resampling

Constructing a hexagonal filter from a resampled transfer function, as described

in this section, requires a comprehensive set of tools for transforming and viewing

hexagonally sampled data. A Hexagonal Fast Fourier Transform (HFFT) is central

to the task of transforming a sampled two-dimensional transfer function into a two-

dimensional impulse response. It should be kept in mind that a cross section of the

two-dimensional transfer function along one of the axes is just the one-dimensional

transfer function that we start out with. We could just use the analytical inverse

polar Fourier transform to compute the desired radial impulse response, but other

methods approximate the exact two-dimensional transfer function, which may re-

quire a large kernel to achieve the desired accuracy, with a two-dimensional transfer

function that requires a much more compact kernel for the same accuracy. The

McClellan transformation is one such method, and since it provides the optimum

results in this respect [12], it is used in this thesis. It will be described at length in

a subsection to follow.

The first subsection presents a short development of hexagonal sampling and

will be followed by subsections detailing the Hexagonal Discrete Fourier Transform

(HDFT) and the hexagonal fundamental period. Other tools for rearranging sampled

data for viewing and processing will be mentioned in the subsections dealing with

42



Chapter 3. Filter Implementation

Figure 3.3: Grid and coordinate system for hexagonal sampling

the procedures that require them. In order for the HDFT to operate correctly and

produce real valued results, the hexagonal fundamental period must be constructed

correctly. Details on the procedure for constructing the hexagonal fundamental pe-

riod appear in a separate subsection. The HFFT will be developed from the preceding

material. The discussion of frequency domain resampling concludes with a detailed

discussion of the McClellan frequency transformation.

3.3.1 Hexagonal Sampling and Frequency Scaling

Referring to Figure 3.3, let T1 be the horizontal sampling interval and T2 be the

vertical sampling interval or spacing between rows. Set up a coordinate system so

43



Chapter 3. Filter Implementation

that n1 varies along the horizontal axis and n2 varies along a line of samples at 120◦

to the horizontal axis. The samples along both axes have the same (unitary) spacing,

even though T2 =
√

3
2

T1. Taking xa(t1, t2) as the continuous analog signal from which

samples are derived, the hexagonally sampled sequence indexed with n1 and n2 is

x(n1, n2) = xa

(
2n1 − n2

2
T1, n2T2

)
. (3.3)

From Mersereau [14], it is seen that for xa(t1, t2) to be exactly recoverable from

Figure 3.4: Dimensions of band limited hexagonal region

x(n1, n2), the analog signal must be band limited by a hexagonal region (shown in

Figure 3.4) with dimensions W1, W2, and W3 such that

T1 <
4π

2W1 + W3

(3.4)

T2 <
π

W2

(3.5)

44



Chapter 3. Filter Implementation

The pyramid software used in this thesis uses bilinear interpolation to produce a

regular hexagonal sampling grid with the same interval as the original square grid. If

W1 = W3 = W , then T1 < 4π
3W

. However, with a unity sampling interval T1 = T and

T2 =
√

3
2

T , the short axis of the hexagon imposes a limit of 2√
3T

on the bandwidth

of a circle inscribed in the hexagonal frequency region. This is still larger than the

bandwidth of a circle inscribed in a rectangular region with the same sample spacing,

and it means that the hexagonal sampling can support a higher bandwidth without

aliasing. Equivalently, an image can be sampled without aliasing by a hexagonal grid

with lower sampling density than with the most efficient rectangular grid.

The relation between the space sampling rate and the maximum bandwidth af-

fects how the hexagonal Fourier transform is interpreted. The central cross-section of

a two-dimensional transfer function of a hexagonal filter provides a means of evaluat-

ing how well that filter reproduces the corresponding rectangular filter. The transfer

function comes from the hexagonal Fourier transform of the specified hexagonal ker-

nel. Because of the greater bandwidth compared to the square sampling pattern

with the same spacing, the plot of the transfer function must be scaled in frequency

by 4/3 in order to compare it with the cross-sectional transfer function of the same

filter on a square grid.

Hexagonal sampling in the frequency domain is similar to that in the space do-

main and in fact can use the same relation between the analog frequency and the

indexing wave number that is used in the space domain, only with different scaling.

To see this, consider the following sampling scheme modified from Simoncelli and

Adelson [24]. The sampling lattice in the space domain is represented by two sam-

pling vectors v0 =

 1

0

 and v1 =

 −1
2

√
3

2

. Thus,
[

v0 v1

]  n1

n2

 =

 x

y

 for the

sampling scheme in equation 3.3 if we make x and y the space coordinates at which

the sample is taken. The frequency domain vectors, from Simoncelli and Adelson

45



Chapter 3. Filter Implementation

[24], are

Ṽ = 2π(V−1)T

where V =
[

v0 v1

]
and Ṽ is the matrix with the frequency sampling vectors ṽ0

and ṽ1 as columns. Thus, ṽ0 = 2π

 1

1√
3

 and ṽ1 = 2π

 0

2√
3

 so that

X(k1, k2) = Xa

(
2πk1, 2π

(
2k2 + k1√

3

))
, (3.6)

where X(k1, k2) is the hexagonal Fourier transform of some hexagonal series x(n1, n2)

and Xa(ω1, ω2) is a transfer function from which samples are taken on a hexagonal

grid. Since absolute orientation does not generally matter, we can rotate the coor-

dinate system by π/2 and reverse the direction of the horizontal axis to produce the

same sampling transformation as for the space domain.

3.3.2 Fourier Transform of Hexagonally Sampled Series

The hexagonally sampled function x̂(n1, n2) arises from the source signal xa(t1, t2)

by multiplying with a sampling function.

x̂(t1, t2) =
∑
n1

∑
n2

xa

(
2n1 − n2

2
,

√
3n2

2

)
δ
(
t1 −

2n1 − n2

2

)
δ

(
t2 −

√
3n2

2

)

=
∑
n1

∑
n2

x(n1, n2)δ
(
t1 −

2n1 − n2

2

)
δ

(
t2 −

√
3n2

2

)
,

after substituting in from Equation 3.3. This sampled function has a Fourier Trans-

form X̂(ω1, ω2) which is replicated over the frequency plane.

X̂(ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞

∑
n1

∑
n2

[x(n1, n2)δ
(
t1 −

2n1 − n2

2

)
δ

(
t2 −

√
3n2

2

)

46



Chapter 3. Filter Implementation

· exp[−iω1t1 − iω2t2]]dt1dt2 (3.7)

=
∑
n1

∑
n2

x(n1, n2) exp

[
−iω1

2n1 − n2

2
− iω2

√
3n2

2

]
(3.8)

Figure 3.5: Hexagonal fundamental periods as a tiling of hexagons and equivalent
parallelograms.

The summand in Equation 3.8 must be hexagonally periodic. That is, its value

repeats for the same position in a fundamental hexagonal period . The fundamental

period can be regarded as any set of 3N2 independent sample values, where N is the

period. The simplest of these are approximately hexagonal in shape. However, it is

easier to perform certain operations, such as summation, over the parallelogram that

results by taking the top half of one hexagon and juxtaposing it with the bottom

half of the nearest horizontal neighbor to the left as shown in Figure 3.5. This yields

47



Chapter 3. Filter Implementation

a fundamental period with N points on one axis and 3N points on the other. The

periodicity of the summand requires that

ω1

[
2n1 − n2

2
− 2(n1 − 3N)− n2

2

]
= 2πkx

3Nω1 = 2πkx

ω2

[√
3n2

2
−
√

3(n2 −N)

2

]
= 2πky

Nω2 =
4πkyn2√

3
,

where kx is the horizontal wave number, ky is the vertical wave number, and both

wave numbers are integral.

It follows that after substituting kx = (2k1−k2)
2

and ky =
√

3k2

2
, the frequencies ω1

in the horizontal direction and ω2 in the vertical direction are:

ω1 =

(
2k1 − k2

2

)(
2π

3N

)

=
π(2k1 − k2)

3N
, and

ω2 =
4πn2k2√

3N
,

where k1 and k2 are the wave numbers along the horizontal and skewed axes, respec-

tively. Putting these results into Eqn 3.8 and summing over a single fundamental

period, the Hexagonal Discrete Fourier Transform (HDFT) for the hexagonal series

x(n1, n2) is:

X(k1, k2) =
3N−1∑
n1=0

N−1∑
n2=0

x(n1, n2) exp

[
−iπ

(2k1 − k2)(2n1 − n2)

3N
− iπ

k2n2

N

]
. (3.9)

Now that we have an expression for the HDFT, it is important to note that a hexag-

onal kernel of arbitrary size must embedded into a periodic structure with 3N ×N

48



Chapter 3. Filter Implementation

points before processing by the HDFT. Processing one such period produces a trans-

fer function of the desired resolution. This is no different from the way a rectangular

kernel is transformed to determine its transfer function, but the details of the embed-

ding operation differ significantly from what is required for a rectangular sampling

grid. The following subsection describes how to build a hexagonal fundamental pe-

riod from a hexagonally sampled values of a function.

3.3.3 Forming a Hexagonal Fundamental Period

The period of the kernel must be explicitly specified since the kernel is generally

much smaller in extent than the Fourier transform, i.e., the transfer function which

is desired. This transfer function extends over a hexagonal fundamental period by

default. Since the Fourier transform is orthogonal, the HDFT algorithm requires as

input a hexagonal period of the same size as its output. It is therefore necessary to

embed the kernel into a fundamental period of that size.

The HDFT of a function will be modulated by complex exponential factors of

linear phase unless the hexagonal fundamental period is positioned so that the origin

in one domain is positioned in a way which is consistent with the position of the

origin in the other domain. That is, to obtain a real-valued transfer function, the

center of a kernel should be at n1 = 0, n2 = 0 and the rest of the kernel distributed

as required by the specified periodicity, remembering that negative coordinates fold

over to the neighboring period. Similarly, a transfer function for which a convolution

kernel is to be computed via inverse HDFT must be centered at k1 = 0, k2 = 0.

Referring to Figure 3.6, it is convenient to begin with a hexagonal kernel or a

circular frequency response inscribed within a hexagon. The corresponding points

in neighboring duplicates of the function substitute for points within the original

hexagon. We can proceed as if the hexagon is divided into sectors and the pieces

49



Chapter 3. Filter Implementation

Figure 3.6: Division of fundamental period hexagon into equivalent parallelogram.

moved around to form the N × 3N parallelogram that the HDFT algorithm requires

as input. The diagram numbers the sectors in order of their appearance in the column

ordering of the final parallelogram. Thus, Sector I fills the first N columns, Sectors

II and III fill columns N +1 to 2N , and Sector IV fills columns 2N +1 to 3N . Initial

column numbering is shifted N positions so that the algorithm never deals with

negative indices. Therefore, the sectoring algorithm must perform a circular shift of

the array N columns in order to position it correctly. The preceding operations use

rectangular arrays that align along the axes shown in the figure. That is, in the space

domain, the columns run along n1 and the rows along the rotated axis n2. Similarly,

in the frequency domain, the columns run along the horizontal k1 axis and the rows

along the rotated k2 axis.

50



Chapter 3. Filter Implementation

Transformations in either direction require that the sampled data be rearranged

into fundamental periods. To derive a transfer function from a hexagonal kernel,

it is necessary to assign tap values to coordinates in the n1, n2 coordinate system

and then position the kernel center at the origin. Any points that have a negative

coordinate as a result of this positioning must be moved to the complementary point

of the fundamental period. The rehex Matlab/Octave routine performs this function.

Starting with the hexagonal kernel stored in alternate offset rows in a square matrix,

the procedure shifts the rows and renumbers the columns to conform to the new

coordinate system. It then embeds the kernel into a N × 3N rectangular array with

the desired transform size N and shifts the array to center it.

The corresponding problem in the frequency domain is to resample a rectan-

gularly sampled transfer function with a hexagonal grid and then store it into a

fundamental period of the correct size and shape. The ftrans Matlab/Octave func-

tion performs a McClellan frequency transformation, which will be described in a

following section, and places the resulting sample values directly into the correct

locations in a hexagonal fundamental period parallelogram. In contrast, oriented

kernel computation starts with a resampled transfer function, but uses the hexagonal

coordinate system with periodic boundaries defined by the hexagonal fundamental

period to determine the location of points in the frequency domain. The frequency

coordinates can then be used to calculate the trigonometric function expressing the

angular shape of the transfer function as a ratio of distances.

3.3.4 The Hexagonal Fast Fourier Transform

Mersereau [14] devised the Hexagonal Fast Fourier Transform (HFFT). Unlike the

rectangular DFT, the HDFT is not separable, so that a HFFT must use two-

dimensional computations. The algorithm, which is based on work by Rivard [19],

51



Chapter 3. Filter Implementation

implements a two-dimensional FFT by exploiting the observation that a DFT of size

N can be constructed from DFTs of size N/2 that cover the same input data [17].

In Mersereau’s algorithm, the sum in Equation 3.9 breaks down into four smaller

sums whose 1) indices are even on both axes, 2) indices are odd on both axes, 3) n1

indices are even and n2 indices are odd, and 4) n1 indices are odd and n2 indices are

even. These smaller DFT terms are:

SF (k1, k2) = HDFTN/2[x(2n1, 2n2)]

SG(k1, k2) = exp
[
i
2π

3N
(k1 − 2k2)

]
·HDFTN/2[x(2n1, 2n2 + 1)]

SH(k1, k2) = exp
[
−i

2π

3N
(2k1 − k2)

]
·HDFTN/2[x(2n1 + 1, 2n2)]

SI(k1, k2) = exp
[
−i

2π

3N
(k1 + k2)

]
·HDFTN/2[x(2n1 + 1, 2n2 + 1)].

Since each of these terms contains only 3N2/4 points, the full DFT of 3N2 points

must be built up in four quadrants (again, after Mersereau):

HDFTN(k1, k2) = SF + SG + SH + SI

HDFTN

(
k1 +

3N

2
, k2

)
= SF − SG + SH − SI

HDFTN

(
k1 + N, k2 +

N

2

)
= SF + SG − SH − SI

HDFTN

(
k1 +

5N

2
, k2 +

N

2

)
= SF − SG − SH + SI

As implemented in this thesis,1 the HFFT algorithms switch the rows and columns

implied in the preceding equations so that n1 and k1 represent the space and wave

number column indices respectively. The corresponding space and wave number rows

are numbered by n2 and k2. Unfortunately, there are some errors in Mersereau’s [14]

exposition, so a careful study of a working implementation may aid understanding.

1The Matlab/Octave functions hfft and rhfft implement the preceding recursion. The
function hdft implements the HDFT represented by Equation 3.9.

52



Chapter 3. Filter Implementation

See the Matlab/Octave Filter Code Appendix for listings of the HFFT algorithms.

Refer to Mersereau [14] for other details.

The HFFT implementation was written to run on Octave and, with only minor

modifications, should run under Matlab as well. The first argument is a matrix

containing a fundamental period of either an impulse response in the space domain

or a transfer function in the frequency domain. The second argument is the desired

size of the transform as the size N of the fundamental period. The last argument is

either 1 if a forward transform from space to frequency domain is desired or -1 for

the reverse direction. The normalizing factor in the reverse direction is 1/3N2 and

must be supplied by the user.

3.3.5 McClellan Frequency Transformation

Designing accurate filters for a pyramid decomposition can be difficult and time-

consuming. If existing filters suit a particular application, then it is often advisable

to use them. In the case of the standard shiftable pyramid presented by Karasiridis

and Simoncelli [10], filter kernels are provided. Since the filter tap values are sampled

on a rectangular grid, reusing the filters requires constructing corresponding filters on

a hexagonal grid. One obvious approach is to resample the kernels themselves with

the appropriate interpolation function. Our attempts to use this approach failed.

The Fourier transform offers itself as the ideal interpolation function, whereby the

kernel transforms into it complementary function in the frequency domain and is

resampled there. This subsection discusses that approach.

The McClellan frequency transformation method transforms a one-dimensional

linear phase FIR filter into a two-dimensional filter with similar properties. The

impulse response h(n) of a linear phase FIR filter is symmetrical about the center

53



Chapter 3. Filter Implementation

tap, so that the transfer function is

H(ω) =
N∑

n=−N

h(n) exp(−iωn)

= h(0) +
N∑

n=1

2h(n) cos(ωn)

=
N∑

n=0

a(n) cos(ωn). (3.10)

A one-dimensional FIR filter with a given number of taps can be transformed into

a two-dimensional filter by replacing the cos(ωn) factor in each term by a transformed

function expressing the frequency in two dimensions. This transformed function

must be a sum of cosine functions so that the two-dimensional transfer function

can have the same number of terms in its Fourier expansion as the original one-

dimensional transfer function. To see this, consider that the transfer function sum

can be expressed as the sum of powers of the cosine, since cos(ωn) can be expressed

as the Chebyshev polynomial of degree n. Thus,

H(ω) =
N∑

n=0

b(n)(cos(ω))n (3.11)

McClellan’s transformation substitutes a two-dimensional sum of cosines for cos(ω)

in the preceding equation. In particular [13, 14], consider the transformation

cos(ω) = fR(ω1, ω2)

= A + B cos(ω1) + C cos(ω2) + D cos (ω1 + ω2) + E cos (ω1 − ω2)

so that

H(ω1, ω2) =
N∑

n=0

b(n)(fR(ω1, ω2))
n

=
N∑

n1=−N

N∑
n2=−N

h(n1, n2) cos(n1ω1) cos(n2ω2),

54



Chapter 3. Filter Implementation

where h(n1, n2) = h(−n1,−n2), thereby causing terms containing sin(nω) to cancel

out.

Since the taps are symmetric about the center, the two-dimensional transfer func-

tion H(ω1, ω2) clearly corresponds to a linear-phase FIR filter. Moreover, the number

of distinct tap values is equal to the square of the number of taps required by the

prototype one-dimensional filter. The transformation produces a two-dimensional

filter with a transfer function that depends on the one-dimensional transfer function

in a way that is wholly determined by the transformation coefficients A, B, C, D,

and E. In general, these coefficients are found by imposing constraints on fR(ω1, ω2),

such as fR(0, 0) = 1, so that A+B +C +D +E = 1, and then optimizing the coeffi-

cients to minimize some error measure. It usually makes sense to use a known set of

coefficients that are tailored to the problem at hand. For hexagonal FIR filters with

circular symmetry, Mersereau suggests

cos ω = fH(ω1, ω2)

= A + B cos

(
2ω1√

3

)
+ C cos

(
ω1√

3
+ ω2

)
+ D cos

(
ω1√

3
− ω2

)
,

where A = −1
3
, B = C = D = 4

9
.

To apply the transformation, pick ω1 and ω2, compute cos(ω) by calculating the

right hand side of the transformation, find ω by applying the cos−1 function to the

right hand side, and return the amplitude of the one-dimensional transfer function

at ω. The fqt Matlab/Octave function implements this procedure given ω1, ω2,

and the one-dimensional transfer function. The ftrans function computes the entire

two-dimensional transfer function, covering the hexagonal fundamental period. It

computes the ω1 and ω2 for each pair of hexagonal indices and calls fqt to perform

the McClellan transformation that computes the amplitude to insert at the indexed

location. Note that fqt scales the frequency by 3
4

so that the frequency is in the

same units as the rectangular-sampled transfer function from which it is sampled.

55



Chapter 3. Filter Implementation

By means of inverse HFFT, the two-dimensional transfer function transforms

into a set of approximately real-valued taps in the hexagonal (or affine) coordinate

system, since it is centered at the origin. To use the result with the pyramid de-

composition software, a set of taps must be inserted into a rectangular coordinate

system with alternate offset rows. The file unhex Matlab/Octave function performs

this transformation and shifts the center of the new kernel to a predictable location

such that the entire kernel appears with positive indices. This array can be used

directly as a kernel in a convolution calculation. However, the kernel often contains

asymmetries that affect the accuracy of the filter it implements. These asymmetries

can be corrected by averaging tap values at the same distance from the center and us-

ing the averaged numbers instead. The radialize Matlab/Octave function converts

a kernel with such slight asymmetries into one that is perfectly circularly symmetric.

As will be shown in the next chapter, reconstruction errors can be reduced by this

method. In addition, some filters are actually improved by trimming the kernel to fit

entirely within a hexagon of a given size. The reader may apply the hexagonalize

Matlab/Octave function to a kernel if this is desired.

3.4 Oriented Filters

A steerable pyramid uses the responses of a small set of oriented basis filters at

fixed angle to synthesize an oriented filter at an arbitrary angle. The interpolation

functions that combine these basis filters depend only on the number of basis fil-

ters, which in turn depend on the order of the polynomial that is used to represent

the angular component of the basis filter transfer function [7]. The interpolation

functions are discussed in Chapter 2. This section discusses the computation of the

basis filters, whose transfer functions are products of an angular and a radial transfer

function [4, 7, 22].

56



Chapter 3. Filter Implementation

To compute an oriented basis filter by the direct analytical method, rewrite the

angular function as a cosine series, produce a radial kernel for each term, multiply

each radial kernel by its cosine function, and sum the resulting set of kernels weighted

by the cosine series coefficients to obtain the final kernel. Each basis function is

just a rotated copy of the unrotated basis function and so the oriented kernel can

be obtained by repeating the preceding steps for each basis filter using the cosine

function rotated by the same amount as the basis function.

Figure 3.7 shows a block diagram of the procedure for computing oriented kernels

using the analytical inverse Fourier transform. The so-called “Inverse k-th order

Hankel transform” in the diagram produces the radial k-th order term of the oriented

kernel from a one-dimensional transfer function, which is the radial component of

the oriented filter transfer function.

The direct method of computing the kernel by analytical inverse polar Fourier

transform enjoys the advantage that the desired kernel may be built up as the sum of

circularly symmetric kernels multiplied by cosine functions of the appropriate order.

That is, the angular function may be applied to the kernel in the space domain.

Because of this property, the accuracy of the oriented filter should be as good as

that of the radial filter from which it was derived. To militate against this benefit,

there is the fact that a k-th order angular term requires the k-th order bessel function

in the radial part of its Fourier transform.

hk(r) cos(kθ) = 4π(−i)k cos(kθ)
∫ ∞

0
RJk(2πrR)H(R)dR

h(r, θ) =
N∑

k=0

hk(r) cos(kθ)

where H(R) is the radial transfer function of the filter. Figure 3.8 shows computed

radial kernels for k = 0, 1, and 3, where the angular function contains terms in eikθ

and the radial component of the transfer function is low-pass. Band-pass radial

57



Chapter 3. Filter Implementation

Figure 3.7: Procedure for constructing an oriented kernel by analytical inverse polar
Fourier transform.

transfer functions show a similar distribution of non-zero kernel values. The higher

the order k, the more non-zero terms are required to represent the filter to a given

accuracy. This problem is not specific to the direct computation method, but applies

to any computation of an oriented kernel. Complicated angular functions generally

require large kernels to implement them.

The alternative method of resampling in the frequency domain and inverse trans-

forming to obtain a kernel offers the possibility of a smaller kernel because the initial

radial kernel can be smaller. Nevertheless, the basic problem of kernel growth with

angular complexity remains. For a fixed kernel size, the reconstruction error will

grow with the order of the angular function. An additional source of error may re-

58



Chapter 3. Filter Implementation

Figure 3.8: Radial kernel profile as function of angular function order.

sult from the application of a DFT to a transfer function that is not band-limited.

This problem occurs with the standard shiftable pyramid band-pass filter, whose

transfer function does not fall to 0 at ω = π. Fortunately, each stage of the pyramid

is itself band limited, so that aliasing from band-pass filter errors should not result

in large reconstruction errors over and above those expected from kernel truncation.

To obtain an oriented filter kernel by frequency domain resampling, multiply a

circularly symmetric frequency response by the angular function and then obtain the

kernel by inverse Fourier transform. Figure 3.9 shows a diagram of the procedure

for constructing an oriented kernel on the hexagonal grid starting with an oriented

kernel on a rectangular grid. Of course, this procedure refers only to polar separable

filters, but there seems to be no need to deal with non-separable filters for this thesis.

Rotated basis kernels are obtained by inverse Fourier transforming the radial transfer

function multiplied by the rotated angular function. The Matlab/Octave Filter Code

59



Chapter 3. Filter Implementation

Figure 3.9: Procedure for constructing an oriented kernel by resampling method.

Appendix contains a set of routines that return a hexagonal oriented kernel given

a rectangular band-pass kernel. The functions bp0gen and bp1gen return the two

basis functions for the cos(θ) oriented filter given the circularly symmetric band-pass

kernel used in the circularly symmetric standard shiftable pyramid and found in the

spfilter.0 of the standard shiftable filter set [20]. The bp3gen function returns the

specified basis function for the cos3(θ) oriented filter given the 0 ◦ oriented band-pass

kernel found in spfilter.3 of the standard shiftable pyramid filter set [20].

60



Chapter 4

Pyramid Reconstruction Accuracy

Applications that employ multi-scale image analysis usually use a synthesis process

to recombine the pyramid subbands after they have been processed. The synthesis

process accurately reconstructs the input image if the subbands have not been al-

tered. For shiftable pyramids, it is sufficient that the power spectrum of the overall

pyramid transfer function be unity over the frequency range of interest. The trans-

fer function of internal stages may also exhibit this property, as with the standard

shiftable pyramid, or they may represent a system transfer function which is sub-

tracted from the original image at the start of analysis and then is recombined with

the difference to complete image synthesis, as in the original shiftable pyramid. In

either case, the accuracy of the synthesized image, which is reconstructed from the

pyramid subbands, depends on the accuracy with which each stage implements the

specified transfer function.

The filters used in the standard shiftable pyramid demonstrate a method of de-

signing filters for accurate reconstruction [10]. Accordingly, both the rectangular

and hexagonal filter sets provide very good reconstruction accuracy for the standard

shiftable pyramid transform. Hexagonal filters obtained by either direct analytical

61



Chapter 4. Pyramid Reconstruction Accuracy

computation or McClellan transformation exhibit the greatest accuracy for a partic-

ular kernel size.

The design of the filters used in the original shiftable pyramid [22] employed

a technique that neglected overall optimization of accuracy in favor of producing

kernels of manageable size. Partly as a result of this approach, the two low-pass

filters uniquely determine a band-pass filter transfer function that requires a large

convolution kernel to reproduce it accurately. Hexagonal kernels computed by either

method achieve greater accuracy with larger kernels.

The following sections present results for a range of kernel sizes, descriptions of

both pyramid designs, and descriptions of both filter construction methods. Recon-

struction accuracies for the circularly symmetric radial filters appear first, followed

by accuracy results for oriented filters of first order, i.e., based on cos(θ), and third

order, i.e., based on i cos3(θ). Finally, some accuracy measurements for steerable

transforms with three basis functions, i.e., based on cos2(θ)), and six basis functions,

i.e., based on i cos5(θ), are presented. It was our hope that these last transforms

would benefit from the higher symmetry of the hexagonal grid, but they were found

to display accuracies comparable to those of the other steerable transforms.

4.1 Accuracy of the Radial Filters

Reconstruction accuracy figures for the two quite dissimilar images shown in Fig-

ure 4.1 appear in the following tables. Both images consist of a 256 × 256 pixel

foreground approximately centered on a 512 × 512 pixel black background. This

embedding lessens edge effects of filtering for even very large (up to 41 × 41) ker-

nels for about 5 decomposition levels. The famous “lena” image downsampled to

256 × 256 pixels and then resampled with bilinear interpolation for the hexagonal

grid produced the results labeled “blena.” The column labeled “bdisk” contains

62



Chapter 4. Pyramid Reconstruction Accuracy

Figure 4.1: Images used for measuring reconstruction accuracy.

reconstruction accuracy results for a white disk on a black background.

The results reported here employ two measures for ascertaining reconstruction

accuracy. The first is the maximum absolute difference of pixel values between the

original image array and its reconstruction. The processing software converts the

original image, which is quantized to 256 levels, to a floating point array with values

that range from 0.0 to 1.0. Thus, the maximum difference value is normalized to a

fraction of full scale. The second measure is the variance about zero of the difference

between the original image and its reconstruction expressed in decibels.

Since a foreground image is embedded in a black background, it makes sense to

report variance and maximum difference of the foreground image by itself as well as

the same figures for the entire image. When errors for the full image are larger than

those for the foreground, this indicates that edge effects dominate. Figures for the

foreground image indicate the accuracy that can be expected when the embedding

technique is used to protect the image from edge effect errors. The benefit in recon-

63



Chapter 4. Pyramid Reconstruction Accuracy

struction accuracy can be substantial, especially when an application requires many

levels of decomposition.

4.1.1 Reference Reconstruction Performance

Reconstruction errors for the standard shiftable pyramid on a rectangular grid ap-

pear first. The filters in this pyramid represent the best efforts of Karasaridis and

Simoncelli [10] to produce accurate filters, and they serve as the standard for recon-

struction accuracy in this thesis. The kernel sizes are 7 × 7, 13 × 13, and 9 × 9 for

the initial low-pass, the recursive low-pass, and the band-pass filters, respectively.

Table 4.1: Accuracy of Standard Shiftable Pyramid on Rectangular Grid

size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

3 .0033(.0033) -60.88(-65.83) .0034(.0034) -60.17(-66.19)
4 .0040(.0040) -58.89(-63.62) .0044(.0044) -56.26(-62.11)
5 .0045(.0045) -56.07(-60.76) .0064(.0064) -53.48(-59.08)
6 .0046(.0046) -55.70(-59.31) .0064(.0064) -53.04(-56.92)
7 .0050(.0068) -53.61(-54.31) .0065(.0065) -52.44(-56.11)

The preceding data indicate that, while the largest pixel error occurs within the

foreground image for decompositions with up to six levels, as the number of levels

increases, progressively more information is spread from the foreground into the

background because of edge effects. Examination of the difference image variance

shows a monotonic decrease in the difference between the variance computed for the

foreground and the variance computed for the entire image. If all the error were

contained within the foreground, then the difference is expected to be approximately

6 dB or a factor of 4, since the foreground occupies one-quarter the total area.

Instead, the difference ranges from almost 5 to about 0.7 for “lena” and from more

64



Chapter 4. Pyramid Reconstruction Accuracy

than 6 to about 3.7 for the “white disk.” The disparity between the images arises

from a larger background area surrounding the disk in the “white disk” image.

The decrease in variance difference between the full image and the foreground

image with the number of decomposition levels indicates spreading of information

from the foreground image to the background as the kernel size approaches that of

the image. Even with perfectly matched filters, the pyramid with not reconstruct the

image perfectly because of edge effects. Edge effects occur because the kernel extends

past the edges of the image for pixels near enough to the edge, and so arbitrary values

must substitute for actual values in this case. The convolution algorithm utilized here

uses a reflection scheme, where the pixels outside the image boundary reflect those

within the boundary as if in a mirror. This scheme produces reasonably good results,

but the best policy ensures that edge pixels matter as little as possible [5]. As the size

of the filtered image shrinks with each downsampling, the percentage of edge pixels

grows proportionately. At the seventh level of decomposition, the image is 8 × 8,

and every pixel is an edge pixel for the recursive low-pass filter, which is 13× 13. In

this case, the background area of “lena” contains the largest error. Performance for

“white disk” with seven decomposition levels looks surprisingly good.

4.1.2 Accuracy of the Original Shiftable Pyramid

In the original shiftable pyramid, two low-pass filters determine the transfer function

for the band-pass filter which determines the radial component of the oriented filters

used to achieve steerability. Evidently, a large kernel is necessary to produce an

accurate filter response at frequency ω = 0. Larger kernels produce greater accuracy

at zero frequency. Figure 4.2 shows the transfer functions of directly-computed

kernels together with the desired transfer function. The thirteen- and twenty-layer

kernels match the desired transfer function closely except for the region near zero

65



Chapter 4. Pyramid Reconstruction Accuracy

Figure 4.2: Band-pass responses for 7, 13, and 20 hexagonal kernel layers.

frequency. The seven-layer kernel produces an acceptable response (to within less

than one percent error in power) except near 0. The other two kernels match the

desired response to within 0.46 percent and 0.23 percent for the thirteen-layer and

twenty-layer kernels, respectively. The tabulated reconstruction accuracies following

reflect these observations.

The expression in the first column represents the filter type and the size of the

recursive low-pass L1, the initial low-pass L0, and the band-pass filter BP , respec-

tively. Names of hexagonal filters are of the form “tran(l1,l0,bp)” or “dir(l1,l0,bp),”

where the quantities in parentheses are the respective number of layers for the L1,

66



Chapter 4. Pyramid Reconstruction Accuracy

Table 4.2: Accuracy of Original Shiftable Pyramid with Analytical Filters

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

dir(4,6,7) 3 .051(.051) -29.78(-34.97) .084(.084) -28.23(-34.18)
dir(4,6,7) 4 .074(.074) -27.66(-32.95) .11(.11) -26.59(-32.50)
dir(4,6,7) 5 .080(.080) -26.79(-31.70) .10(.10) -26.81(-32.59)
dir(4,6,7) 6 .099(.099) -26.85(-29.63) .10(.10) -26.87(-31.44)

dir(7,10,13) 3 .0082(.0082) -45.81(-50.97) .013(.013) -45.41(-51.22)
dir(7,10,13) 4 .0086(.0086) -44.93(-49.66) .012(.012) -45.65(-51.17)
dir(7,10,13) 5 .010(.038) -44.81(-44.68) .013(.013) -45.75(-50.28)
dir(14,14,20) 3 .0042(.0042) -52.49(-57.51) .0044(.0044) -52.98(-58.60)
dir(14,14,20) 4 .0039(.0047) -51.94(-56.01) .0041(.0041) -52.54(-57.80)
dir(14,14,20) 5 .0070(.036) -49.50(-46.37) .0061(.011) -51.00(-53.89)

L0, and BP filters. The “tran” stands for a filter obtained by transformation, and

the “dir” notation means that the filter was calculated directly from the transfer

function using the analytical Fourier transform.

For a given kernel size, the directly-computed and McClellan transformation ker-

Table 4.3: Accuracy of Original Shiftable Pyramid with Transformed Filters

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

tran(4,6,7) 3 .062(.062) -29.20(-34.78) .087(.087) -27.97(-33.99)
tran(4,6,7) 4 .076(.076) -27.31(-32.81) .10(.10) -26.46(-32.46)
tran(4,6,7) 5 .082(.082) -26.60(-31.98) .093(.093) -26.88(-32.71)
tran(4,6,7) 6 .084(.084) -26.80(-30.56) .094(.094) -27.18(-32.71)

tran(7,10,13) 3 .0077(.0077) -47.76(-52.82) .010(.010) -47.79(-53.61)
tran(7,10,13) 4 .0076(.0076) -47.87(-52.13) .0086(.0086) -49.10(-54.31)
tran(7,10,13) 5 .0063(.0065) -49.41(-51.11) .0062(.0062) -51.06(-53.59)
tran(14,14,20) 3 .0037(.0037) -58.90(-62.28) .0033(.0033) -57.45(-62.81)
tran(14,14,20) 4 .0026(.0026) -61.81(-61.19) .0032(.0032) -56.84(-60.94)
tran(14,14,20) 5 .0036(.0077) -61.10(-55.30) .0036(.0059) -55.06(-55.89)

67



Chapter 4. Pyramid Reconstruction Accuracy

nels show comparable performance. As expected, the performance for “white disk”

consistently falls short of that for “lena” because of the poor band-pass performance

at 0 frequency. For sufficiently large kernels of either type, the accuracy of recon-

struction is comparable to or better than that of the carefully designed standard

shiftable pyramid with rectangular sampling. However, the large kernels produce

significant edge effect errors beyond a pyramid with four levels, and the computation

time required is likely to be unacceptable for most applications. In order to avoid

large kernels, it is necessary to use optimal design techniques. One-dimensional fil-

ters that satisfy design constraints imposed by the pyramid may be obtained by

optimization to achieve minimum reconstruction error. The standard shiftable pyra-

mid design utilizes filters that were designed with such a process and constructed on

a rectangular grid. These filters were reconstructed on a hexagonal grid and used to

produce the results reported in the next subsection.

4.1.3 Accuracy of the Standard Shiftable Pyramid

The standard shiftable pyramid uses filters carefully optimized for minimum recon-

struction error and for a particular kernel size. Excellent reconstruction accuracy is

obtained with a relatively small kernel size for both types of filter. Tabulated results

follow.

The quality of the filter match shows up immediately in the results for the small-

est kernel, in which the maximum pixel error is approximately one quarter the error

for the filters in the original shiftable pyramid. As might be expected, filters con-

structed by resampling kernels which have been optimized for a particular set of

sizes perform best with similar kernel sizes. Measurements indicate that the filter

accuracy actually degrades when the kernel size of the anti-aliasing low-pass filter is

above a particular optimum value. This phenomenon might be attributed to noise

68



Chapter 4. Pyramid Reconstruction Accuracy

Table 4.4: Accuracy of Standard Shiftable Pyramid with Analytical Filters

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

dir(4,6,7) 3 .013(.013) -50.69(-54.95) .013(.013) -50.75(-55.80)
dir(4,6,7) 4 .015(.015) -47.89(-51.86) .015(.015) -46.78(-51.85)
dir(4,6,7) 5 .017(.017) -46.04(-49.07) .020(.020) -43.20(-48.12)
dir(4,6,7) 6 .018(.018) -44.96(-46.54) .022(.023) -41.04(-44.82)
dir(4,6,7) 7 .017(.024) -44.11(-44.13) .024(.024) -38.96(-42.70)

dir(7,10,13) 3 .0039(.0039) -61.09(-65.00) .0044(.0044) -60.49(-65.80)
dir(7,10,13) 4 .0049(.0049) -58.61(-61.90) .0050(.0050) -57.00(-62.01)
dir(7,10,13) 5 .0051(.0051) -56.67(-58.92) .0061(.0061) -55.62(-58.82)
dir(7,10,13) 6 .0055(.0078) -56.64(-56.74) .0061(.0086) -52.81(-53.61)
dir(7,10,13) 7 .0073(.013) -52.93(-51.38) .0081(.011) -49.19(-49.77)
dir(14,14,20) 3 .0041(.0041) -60.85(-64.94) .0042(.0042) -59.54(-65.11)
dir(14,14,20) 4 .0043(.0043) -58.92(-62.33) .0053(.0053) -55.67(-60.99)
dir(14,14,20) 5 .0054(.0054) -56.17(-58.81) .0063(.0063) -53.66(-58.22)
dir(14,14,20) 6 .0063(.0081) -54.79(-56.44) .0092(.0092) -50.26(-52.57)

in the kernel generation process, or it might be that the desired filter response is

achieved optimally at a particular kernel size. This thesis does not try to resolve this

issue.

Both types of filter have an optimum kernel size for which they have comparable

levels of performance. Moreover, the best results exceed the performance of the

rectangular filter used as a standard. This demonstrates that a good design can

be copied accurately from one sampling system to another. It is interesting that

the McClellan transformation filter outperforms the analytically constructed filter.

This disparity may be attributed to the fact that the analytically constructed filter

tries to copy a slightly incorrect filter (and does so precisely), while the McClellan

transformation mirrors the process that produced the original filter, thus reproducing

the optimized two-dimensional transfer function more accurately.

69



Chapter 4. Pyramid Reconstruction Accuracy

Table 4.5: Accuracy of Standard Shiftable Pyramid with Transformed Filters

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

tran(4,7,7) 3 .0095(.0095) -53.21(-57.60) .0074(.0074) -53.15(-58.55)
tran(4,7,7) 4 .011(.011) -50.12(-54.38) .0093(.0093) -48.91(-54.38)
tran(4,7,7) 5 .013(.013) -47.74(-51.80) .013(.013) -45.65(-51.15)
tran(4,7,7) 6 .013(.013) -46.45(-49.73) .017(.017) -42.38(-47.79)
tran(4,7,7) 7 .013(.014) -45.24(-45.88) .023(.023) -40.15(-44.67)
tran(7,8,13) 3 .0022(.0022) -65.12(-69.00) .0020(.0020) -65.02(-70.39)
tran(7,8,13) 4 .0042(.0042) -62.89(-66.41) .0065(.0065) -61.10(-66.18)
tran(7,8,13) 5 .0036(.0036) -60.83(-63.75) .0038(.0038) -60.82(-64.46)
tran(7,8,13) 6 .0036(.0067) -60.22(-59.59) .0046(.0046) -59.03(-58.68)
tran(7,8,13) 7 .0036(.0011) -59.86(-49.63) .0076(.0084) -54.18(-51.57)
tran(7,10,13) 3 .012(.012) -48.95(-53.34) .0098(.0098) -48.70(-54.22)
tran(7,10,13) 4 .014(.014) -46.51(-50.62) .013(.013) -44.60(-50.19)
tran(7,10,13) 5 .016(.016) -44.28(-48.29) .018(.018) -40.87(-46.47)
tran(7,10,13) 6 .017(.017) -42.41(-45.97) .023(.023) -38.68(-44.27)
tran(7,10,13) 7 .018(.018) -41.72(-43.93) .026(.026) -37.72(-42.93)
tran(14,14,20) 3 .012(.012) -48.24(-52.57) .011(.011) -47.44(-52.99)
tran(14,14,20) 4 .014(.015) -46.02(-49.99) .014(.014) -43.19(-48.80)
tran(14,14,20) 5 .016(.016) -43.48(-47.46) .021(.021) -40.04(-45.64)
tran(14,14,20) 6 .017(.017) -42.15(-45.77) .026(.026) -38.28(-43.55)
tran(14,8,20) 3 .0022(.0022) -65.14(-69.07) .0019(.0019) -64.94(-70.34)
tran(14,8,20) 4 .0032(.0032) -63.25(-67.05) .0062(.0062) -61.28(-66.36)
tran(14,8,20) 5 .0033(.0033) -62.20(-64.92) .0039(.0039) -60.48(-64.21)
tran(14,8,20) 6 .0032(.0060) -60.50(-60.32) .0032(.0038) -61.04(-59.78)

4.2 Accuracy of the Oriented Filters

The reconstruction accuracy of an oriented filter for a given kernel size is generally

expected to be lower than for the circularly symmetric filter from which it is derived.

The highest order of the Bessel function in the polar Fourier transform equals the

highest order term of the Fourier expansion of the angular function embodied in the

oriented filter. As noted in Chapter 3 and depicted in Figure 3.8, the higher the order

of the Bessel function, the more extended the support required for the transformed

70



Chapter 4. Pyramid Reconstruction Accuracy

transfer function in the space domain. The reconstruction accuracy results for the

rectangular filters for the standard shiftable pyramid support this expectation.

4.2.1 Rectangular Standard Shiftable Pyramid Accuracy

The rectangular filter kernels are 9 × 9, 17 × 17, and 9 × 9 for the initial low-pass,

recursive low-pass, and oriented band-pass filter kernels, respectively.

Table 4.6: Accuracy of Rectangular Standard Shiftable Pyramid with cos(θ)

size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

3 .016(.016) -49.15(-54.29) .014(.014) -49.52(-55.54)
4 .018(.018) -47.36(-52.16) .029(.029) -46.30(-52.02)
5 .020(.038) -46.22(-45.32) .024(.024) -41.86(-27.26)
6 .022(.065) -42.91(-35.27) .025(.045) -41.22(-37.59)
7 .12(.24) -25.78(-23.18) .092(.164) -28.062(-25.51)

Table 4.7: Accuracy of Rectangular Standard Shiftable Pyramid with cos3(θ)

size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

3 .020(.020) -47.37(-52.47) .016(.016) -47.70(-53.72)
4 .025(.025) -45.32(-50.08) .029(.029) -44.33(-50.07)
5 .028(.038) -43.54(-44.39) .029(.029) -40.16(-45.50)
6 .033(.070) -40.98(-35.34) .034(.044) -39.41(-37.61)
7 .12(.23) -26.38(-23.30) .094(.17) -28.85(-25.05)

The results show that the error of the oriented filters is approximately five times

the error for the purely radial filters, and the error of the third order filter is compa-

rable. These figures are close to the reconstruction errors reported in Karasaridis and

Simoncelli [10]. The first order filter had reconstruction accuracy of -44.36 dB(-50.29

71



Chapter 4. Pyramid Reconstruction Accuracy

dB) variance for the cropped (full) zone plate image and a pyramid with three levels.

Karasaridis and Simoncelli reported -47 dB variance for a similar zone plate image

and pyramid. The third order filter produced a three-level reconstruction error of

−41.38 dB(-47.33 dB) for the same image, and the paper claims ≈ -40 dB. These

figures correspond to respective standard deviations of the error about 0 of .0045 and

.01, respectively. The quantization is .0039 for the 256 grey level images used here,

so these errors correspond to between about 1 and 2.5 shades of gray.

4.2.2 Steerable Original Shiftable Pyramid Accuracy

The reconstruction accuracy for the steerable original shiftable pyramid is much

higher than expected. The readiest explanation for this behavior is that the greatest

source of filter error lies near frequency zero in the radial component. The oriented

filters force the DC component of the transfer function to zero, thus producing an

extremely accurate band-pass filter. The results shown in the following table report

maximum reconstruction error for the first order, i.e. based on cos(θ), oriented filter

less than one-tenth the maximum error for the circularly symmetric filter from which

it was derived.

This phenomenon occurs only for the analytically computed filter kernels, which

compute an exact impulse response from an exact transfer function. Kernels com-

puted by the McClellan transformation and inverse HFFT produce more typical ac-

curacies. The McClellan transformation produces an approximately circular transfer

function which is then multiplied by the angular function. Errors attributable to

approximation may explain the lower reconstruction accuracy of filters constructed

by this method.

72



Chapter 4. Pyramid Reconstruction Accuracy

Table 4.8: Accuracy of Original Shiftable Steerable Pyramid with cos(θ)

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

dir(7,10,13) 3 .0007(.0008) -75.34(-78.87) .0007(.0007) -74.07(-79.10)
dir(7,10,13) 4 .0007(.0030) -73.78(-67.96) .0009(.0047) -71.84(-70.23)
dir(7,10,13) 5 .0028(.095) -61.70(-40.26) .0026(.013) -64.53(-54.95)
dir(7,10,13) 6 .0094(.32) -47.94(-25.92) .0096(.17) -47.86(-32.09)
tran(7,10,13) 3 .011(.011) -50.59(-55.43) .012(.012) -49.11(-54.91)
tran(7,10,13) 4 .014(.014) -48.72(-53.03) .016(.016) -46.59(-51.98)
tran(7,10,13) 5 .015(.11) -46.60(-38.31) .020(.020) -43.37(-47.69)
tran(7,10,13) 6 .018(.31) -42.68(-25.87) .024(.19) -40.13(-30.46)

4.2.3 Hexagonal Standard Shiftable Pyramid Accuracy

The filters computed for the standard shiftable pyramid exhibit accuracy comparable

to that of the same pyramid on the rectangular grid, although larger kernels are

necessary to achieve this result. The filter set provided by Simoncelli [20] for the

first order oriented pyramid produced poor reconstruction accuracy on a hexagonal

grid. We used the circularly symmetric filters instead, i.e., the filters used in the

design of the radial components of the filters, with kernel sizes identical to those

that produced the best performance for the circularly symmetric pyramid. The

third order filters provided by Simoncelli worked well. Directly computed kernels

performed comparably to kernels computed by McClellan transformation.

The third order filters perform about as well as the first order filters, despite the

expected broadening of the impulse response due to the higher order Bessel functions

in the transform integral. This good performance may be attributed to painstaking

optimization for minimum reconstruction error when designing each set of filters.

73



Chapter 4. Pyramid Reconstruction Accuracy

Table 4.9: Accuracy of Original Shiftable Oriented Pyramid with cos3(θ)

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

dir(4,6,7) 3 .013(.013) -49.59(-53.28) .012(.012) -48.64(-53.80)
dir(4,6,7) 4 .015(.015) -47.88(-51.52) .028(.028) -45.64(-50.42)
dir(4,6,7) 5 .017(.092) -47.63(-40.07) .017(.017) -44.39(-47.97)
dir(4,6,7) 6 .021(.31) -43.37(-25.94) .020(.18) -42.53(-31.80)

dir(7,10,13) 3 .0035(.0035) -57.56(-63.61) .0034(.0034) -57.93(-63.54)
dir(7,10,13) 4 .0042(.0043) -58.06(-60.52) .0047(.0047) -53.53(-58.96)
dir(7,10,13) 5 .0059(.090) -52.46(-40.22) .0060(.0072) -51.41(-53.41)
dir(7,10,13) 6 .014(.30) -45.51(-26.20) .013(.18) -45.64(-31.95)
tran(7,10,13) 3 .014(.014) -48.78(-53.41) .016(.016) -46.50(-52.34)
tran(7,10,13) 4 .016(.016) -46.43(-50.81) .018(.018) -43.11(-48.82)
tran(7,10,13) 5 .017(.11) -43.16(-38.12) .022(.022) -40.06(-45.09)
tran(7,10,13) 6 .021(.30) -40.02(-26.13) .027(.20) -37.84(-30.35)

4.2.4 Additional Oriented Filters for the Original Shiftable

Pyramid

The oriented filter sets presented in the preceding sections align on symmetry axes of

the square sampling grid. Even though the 45 degree axis aligns with fewer samples

than the horizontal and vertical axes do, this does not detectably affect performance.

Since the pyramid is oversampled, this is to be expected. The hexagonally sampled

filters perform as well as the rectangularly sampled filters for the same reason.

The last two oriented filters presented in the following examine the reconstruction

accuracy obtained with filters whose basis components align along the axes of a

hexagonal grid. The cos2(θ) filter is constructed with three basis filters aligned to

0 ◦, 60 ◦, and 120 ◦, while the cos5(θ) filter has basis filters aligned to 0 ◦, 30 ◦, 60 ◦,

90 ◦, 120 ◦, and 150 ◦. Figure 4.3 shows the “lena” image after filtering with the

three cos2(θ) basis filters. Hexagonal renderings of the corresponding kernels appear

below each filtered image. Figure 4.4 similarly shows the same image filtered with

74



Chapter 4. Pyramid Reconstruction Accuracy

Table 4.10: Accuracy of Oriented Shiftable Pyramid with cos(θ)

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

dir(4,6,7) 3 .035(.035) -41.41(-45.85) .028(.028) -42.11(-47.59)
dir(4,6,7) 4 .041(.041) -38.92(-43.20) .035(.035) -38.40(-43.87)
dir(4,6,7) 5 .045(.048) -37.17(-40.98) .031(.042) -34.20(-39.50)
dir(4,6,7) 6 .062(.26) -32.93(-27.89) .069(.069) -31.10(-35.30)

dir(7,10,13) 3 .016(.016) -50.04(-53.73) .012(.012) -50.71(-55.90)
dir(7,10,13) 4 .021(.021) -47.49(-50.79) .027(.027) -47.57(-52.17)
dir(7,10,13) 5 .019(.024) -46.44(-47.42) .026(.029) -46.21(-47.52)
dir(7,10,13) 6 .028(.25) -41.05(-28.47) .030(.060) -41.75(-38.30)
dir(7,10,13) 7 .049(.39) -31.44(-20.60) .065(.35) -32.79(-21.54)
tran(7,8,13) 3 .022(.022) -47.10(-51.03) .016(.016) -47.67(-53.18)
tran(7,8,13) 4 .022(.023) -44.70(-47.92) .021(.021) -44.50(-49.51)
tran(7,8,13) 5 .025(.029) -43.09(-44.94) .023(.039) -43.34(-44.88)
tran(7,8,13) 6 .037(.25) -41.25(-28.54) .039(.089) -40.86(-35.40)
tran(7,8,13) 7 .057(.37) -32.12(-20.52) .078(.32) -32.33(-21.60)

the six cos5(θ) basis filters and the corresponding six filter kernels. The orientation

directions should be apparent from both the kernels and the image features that are

accentuated in a given image. Each filter emphasizes the intensity gradient, so that

features aligned along the filter orientation disappear and those perpendicular to it

are enhanced.

The following tables contain reconstruction accuracy results for the third order

and sixth order oriented filters. The cos2(θ) filter performs respectably, but not as

well as the cos3(θ) filter. This disappointing result can possibly be attributed to the

zero frequency term in the cos2(θ) = 1
2
(1 + 2 cos(2θ)) function, which has no angular

function to pin its transfer function to zero at ω = 0. The cos5(θ) filter performs

comparably well, but its accuracy falls off rapidly with the number of levels because

of its high angular order. The improved three level performance of the cos5(θ) filter

with twenty layers indicates that accuracy improves further with kernel size.

75



Chapter 4. Pyramid Reconstruction Accuracy

Table 4.11: Accuracy of Oriented Standard Shiftable Pyramid with cos3(θ)

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

dir(7,10,13) 3 .019(.019) -47.60(-51.48) .013(.013) -47.49(-52.91)
dir(7,10,13) 4 .025(.033) -45.98(-47.89) .034(.034) -44.30(-49.45)
dir(7,10,13) 5 .024(.081) -44.64(-40.07) .026(.042) -41.94(-43.47)
dir(7,10,13) 6 .037(.23) -40.43(-28.41) .046(.099) -42.23(-32.37)
dir(7,10,13) 7 .11(.41) -27.10(-21.06) .10(.43) -27.57(-20.91)
tran(7,11,13) 3 .020(.020) -47.44(-51.47) .014(.014) -47.94(-53.38)
tran(7,11,13) 4 .023(.033) -45.34(-47.40) .030(.030) -45.73(-50.59)
tran(7,11,13) 5 .026(.075) -44.83(-39.92) .036(.036) -45.11(-44.95)
tran(7,11,13) 6 .037(.23) -40.39(-28.52) .059(.099) -40.36(-32.10)
tran(7,11,13) 7 .091(.38) -26.26(-28.82) .094(.38) -27.63(-21.17)

The standard shiftable pyramid does not supply third and sixth order angular

functions, so it was not possible to obtain results for these filters.

Table 4.12: Accuracy of Original Shiftable Oriented Pyramid with cos2(θ)

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

dir(7,10,13) 3 .0087(.0087) -48.78(-53.58) .0079(.0079) -50.76(-55.93)
dir(7,10,13) 4 .0078(.0085) -49.31(-52.41) .0056(.0056) -52.25(-55.71)
dir(7,10,13) 5 .0094(.066) -50.79(-42.36) .0048(.014) -55.10(-52.11)
dir(7,10,13) 6 .017(.12) -44.89(-33.93) .014(.14) -45.18(-33.29)

76



Chapter 4. Pyramid Reconstruction Accuracy

Figure 4.3: “lena” image convolved with three cos2(θ) basis kernels.

Table 4.13: Accuracy of Original Shiftable Oriented Pyramid with cos5(θ)

type(l1,l0,bp) size blena(full) bdisk(full)
max error 10 log10(σ

2) max error 10 log10(σ
2)

dir(7,10,13) 3 .0082(.0082) -51.64(-55.84) .0078(.0078) -50.44(-56.03)
dir(7,10,13) 4 .010(.010) -50.02(-53.29) .0096(.0096) -46.12(-51.63)
dir(7,10,13) 5 .012(.086) -46.16(-39.76) .014(.014) -43.75(-46.94)
dir(7,10,13) 6 .020(.29) -41.65(-26.41) .021(.19) -41.35(-31.41)
dir(7,10,20) 3 .0033(.0034) -60.37(-63.73) .0045(.0045) -57.38(-62.83)
dir(7,10,20) 4 .0043(.012) -56.90(-57.54) .0050(.0050) -53.69(-57.78)
dir(7,10,20) 5 .0063(.086) -53.97(-40.17) .0056(.014) -52.87(-48.05)
dir(7,10,20) 6 .013(.29) -46.47(-26.46) .013(.019) -46.35(-31.39)

77



Chapter 4. Pyramid Reconstruction Accuracy

Figure 4.4: “lena” image convolved with six cos5(θ) basis kernels.

78



Chapter 5

Noise Reduction Using Local

Orientation Analysis

5.1 Application Overview

This final chapter presents an application that attempts to take advantage of the

higher orientation accuracy of the hexagonal steerable pyramid when compared to

its rectangularly sampled counterpart. Because of its higher angular resolution, any

measurement of local orientation by a hexagonal oriented filter should produce a

more accurate signal than is produced by a rectangular oriented filter with the same

sampling interval. The following discussion first presents comparative results of local

orientation mapping [22] for a “cross” figure and for the “lena” image.

No practical difference in the properties of the orientation map are observed

between hexagonal and rectangular pyramids. It is perhaps due to this fact that

a noise reduction application using local orientation analysis [22] does not perform

significantly better with hexagonal sampling than it does with rectangular sampling.

These results are unexpected and somewhat disappointing, but we expect that a

79



Chapter 5. Noise Reduction Using Local Orientation Analysis

more carefully chosen application or an implementation of this application with wider

bandwidth images would demonstrate the higher angular resolution of the hexagonal

grid. We report the methods used to implement the application and discuss local

orientation analysis in order to support future work.

As described in Simoncelli et al [22], removal of noise depends on detecting some

property of the noise that differs from the same property of the image. The local

orientation of image features should be much higher than that of the noise, so mea-

surements of local orientation energy can be used to remove noise from an image.

Oriented features may include both lines and edges, which require even and odd sym-

metry filters, respectively, for their detection. A quadrature pair of filters provides

both symmetries. The derivation and use of these filter pairs will be presented.

5.2 Local Orientation Mapping

This section presents a comparison between the results of a measurement process

for an image represented using a square grid and results of the same process on an

image represented using a hexagonal grid. Since the measurements are very likely

dependent on the specific sampling process, it is important to take sample density into

account. In this section and in the following section, which describes the application

of local orientation analysis to noise reduction, the two images have nearly identical

sample density. They are derived from a 512 × 512 image which is filtered by a

Gaussian and then downsampled. For the square sampled image, the samples are

taken every other point in both horizontal and vertical directions so that a square

grid results. For the hexagonal image, the sample points are decimated by the same

ratio, but alternate rows are shifted one sample over to produce a stretched hexagonal

grid. That is, the grid has vertical spacing that is 2/
√

3 larger than for a regular

hexagonal grid. This distortion should not make any difference in measurement

80



Chapter 5. Noise Reduction Using Local Orientation Analysis

accuracy and leaves the two sample grids with nearly the same density. Figure 5.1

shows the two downsampling patterns used. We anticipate that the advantage of

Figure 5.1: Square and hexagonal downsampling patterns for noise reduction com-
parison.

a regular hexagonal sampling grid lies with its higher sample density for the same

sample spacing, but resampling the image with this spacing is difficult to do without

inadvertantly filtering the image, i.e., during interpolation, or otherwise introducing

errors, i.e., through aliasing, to the image. Therefore, we will leave exploration of

this issue to future work and present results obtained with rectangular and hexagonal

images having nearly equal spacing.

Measurements of extent, location, and orientation characterize an image feature

sufficiently for many image processing applications. Some applications, such as noise

removal, can effectively utilize orientation information alone, since it is only necessary

to determine the degree to which an area of the image is oriented or non-oriented

to decide whether or not it is noise. The accuracy of the orientation measurement

determines the accuracy with which image features that remain after noise removal

are represented, so that a filter that delivers a more accurate orientation signal should

reproduce the original image with smaller errors.

A typical oriented filter computes a directional derivative on pixel grey values.

81



Chapter 5. Noise Reduction Using Local Orientation Analysis

In the frequency domain, this is equivalent to multiplying the Fourier transform of

the image by the transfer function of a band pass filter multiplied by cosk(θ − θi),

where k is the integral degree of the derivative, θ is the angular variable, and θi is the

dominant direction of the angular function. Consider the case where θi = 0. For odd

k, cosk(θ) is positive over the entire right half of the frequency plane and negative

over the entire left half of the plane. For even k, cosk(θ) is positive over the entire

plane. The Hilbert transform of a filter kernel yields its quadrature counterpart

[3], and the Fourier transform of the Hilbert transform of the kernel produces a

transfer function which is identical to the transfer function of the original filter but

which is multiplied by -1 over half the frequency plane [3]. The line that divides the

frequency plane into two halves passes through the origin, and it is perpendicular to

the dominant direction of the transfer function of the original filter [11]. Figure 5.2

shows the 0 ◦ basis kernel for the cos5(θ) oriented filter on the left. The kernel on the

right side of the figure is its quadrature counterpart. The kernel on the right clearly

displays symmetry from left to right, while the kernel on the left does not. In fact,

the lefthand kernel is anti-symmetric from left to right.

Figure 5.2: 0 ◦ basis kernel for cos5(θ) oriented filter and its quadrature counterpart.

82



Chapter 5. Noise Reduction Using Local Orientation Analysis

To measure the orientation strength and dominant orientation angle at any point

in the image, it is necessary to filter the image with both the oriented filter and

its quadrature counterpart. This procedure produces an odd symmetric filter from

an even symmetric filter, and vice versa. Mathematically speaking, the quadrature

filter is the analytical completion of the original filter [3], so that the pair represents

the full complex filter.

An orientation mapping plots the orientation energy at a particular image point

as a function of steering angle. Energy is measured by steering the filter and its

quadrature counterpart to a given angle and then summing the squares of the pixel

amplitudes from both filters [22]. To get the pixel amplitude for the filtered image,

it is necessary only to sum the products of the amplitude with each kernel element

for the oriented filter and normalize. The anti-aliasing low-pass pyramid filter serves

as the normalization standard, so the sum of its kernel elements provides the nor-

malization constant.

The steerable filter used in the following for local orientation analysis is based

on cos5(θ). The angular function for the quadrature filter is therefore | cos5(θ)|.

The simplest way to compute a kernel for the quadrature filter is to determine the

first few coefficients of the Fourier series for the angular function and then directly

compute each term of the kernel as described in Section 3.2 [7]. The Fourier seriers

is computed using Matlab/Octave. The dot product of the sampled angular function

and the sampled cosine function of the desired frequency gives the raw coefficient for

that frequency. The normalized coefficient for a particular frequency is obtained by

dividing the raw coefficient by N/2, where N is the number of samples. Dividing the

DC coefficient by 2 again yields the normalized coefficient for frequency zero. The

quadrature function in this case is even, so that only even frequencies in the cosine

series have nonzero coefficients. The pyramid software divides the coefficients by

2q−1, where q is the maximum frequency in the Fourier series expansion. Therefore,

83



Chapter 5. Noise Reduction Using Local Orientation Analysis

Figure 5.3: “Cross” image used for orientation maps.

the user must multiply the given coefficients by 2q−1 in order to use the pyramid

software as it stands.

Figure 5.3 shows the “cross” image and Figure 5.4 shows the orientation maps for

points in the center, on the horizontal top edge, and the vertical right edge proceeding

from left to right. In each case, the orientation energy for the hexagonal image is

close to that of the rectangular image at each orientation. The orientation maps put

0 ◦ at the top, so that the pattern appears to align with the measured edge. In fact,

the gradient, and therefore the steering angle at which there is maximum energy, is

displaced by 90 ◦. However, since feature orientation is the direction perpendicular

to the feature edge gradient, the orientation maps give the correct impression. The

dark blue plots show the orientation map for the hexagonal image, while the magenta

plots show the orientation map for the rectangular image.

Sampling the “lena” image at a few points yields orientation maps that indicate

that the hexagonal and rectangular sampling grids produce approximately the same

relative orientation strength. Figure 5.5 shows the image with white circles approxi-

mately centered on the points for which orientation maps were obtained. Figure 5.6

shows the maps themselves.

84



Chapter 5. Noise Reduction Using Local Orientation Analysis

Figure 5.4: Orientation maps at center, upper horizontal edge, right vertical edge of
the cross.

Comparison of the hexagonal and rectangular orientation maps indicate that the

strength of the orientation signal for hexagonal images is about the same as that for

rectangular images.

85



Chapter 5. Noise Reduction Using Local Orientation Analysis

Figure 5.5: Locations of orientation mapping points for “lena.”

86



Chapter 5. Noise Reduction Using Local Orientation Analysis

Figure 5.6: Orientation maps at various points of “lena” image.

87



Chapter 5. Noise Reduction Using Local Orientation Analysis

5.3 Noise Reduction Application

Random pixel noise can produce image features with multi-pixel extent and orien-

tation but only with small probability. True image features must extend over finite

areas and have edges with measurable orientation. Therefore, noise can be distin-

guished from image features by measuring local orientation energy. This is computed

as the sum of the squares of the pixel amplitudes from the image as filtered by an

oriented filter and its quadrature counterpart. Figure 5.7 shows the noise procedure

described in the Simoncelli, et al paper [22].

Figure 5.7: Noise reduction by local orientation analysis.

The pyramid transform described in Simoncelli, et al [22] supports local orien-

tation analysis by decomposing the input image into a high-pass component and

88



Chapter 5. Noise Reduction Using Local Orientation Analysis

a low-pass component, and then filtering the low-pass component with a steerable

oriented filter. A steerable pyramid using filters with odd symmetry and another

steerable pyramid using the corresponding quadrature partners with even symmetry

suffice to support local orientation analysis of any input image. Freeman and Adel-

son [7] describe a method for rapid approximation of the local orientation energy and

dominant direction of every point in an image. If G(θ) and H(θ) are respectively

the filter outputs of a steerable filter and its quadrature, then the orientation energy

E(θ) is

E(θ) = G2(θ) + H2(θ).

Expressing G(θ) and H(θ) as the sum of basis filter outputs multiplied by steering

coefficients, we get for the cos5(θ) function,

E(θ) =

[
5∑

k=0

(cos(θ − kπ/6) + cos(3(θ − kπ/6)) + cos(5(θ − kπ/6)))gk/3

]2

+

[
4∑

k=0

(1 + 2 cos(2(θ − kπ/5)) + 2 cos(4(θ − kπ/5)))hk/5

]2

= C1 + C2 cos(2θ) + C3 sin(2θ) + higher order terms in θ,

where gk and hk are the pixel amplitudes for the outputs of the kth basis filter

for the oriented filter and its quadrature counterpart, respectively. The constants

C1 . . . C3 vary from point to point of the filtered image and depend only on the filter

outputs at those points. Expressing the orientation energy as a Fourier series in

θ separates its angular dependence from the basis filter output amplitudes. The

pointwise dominant angle may then be computed from the pointwise coefficients.

The dominant orientation angle at each point is estimated by [7]

θd = tan−1(C3/C2)/2.

89



Chapter 5. Noise Reduction Using Local Orientation Analysis

Computation of C1 . . . C3 reduces to summing the dot products of the rows of

precomputed matrices that depend only on the Fourier term and the steering coeffi-

cients and the columns of the outer product of the vector of basis filter outputs with

itself. The i, jth component of the precomputed matrix is the corresponding Fourier

coefficient of the product of the ith and jth steering coefficients. Matlab/Octave

computes such coefficients easily as the dot product of the sampled Fourier basis

function (sin(mθ) or cos(mθ) for the mth term) and the sampled steering coefficient

product. For instance, if the matrix that produces C2 for the cos5(θ) function is

called M2, then

(M2)rs =
N∑

t=0

cos(2t · (2π/N))cr(t/N)cs(t/N), where

cr(x) = (cos(x− rπ/6) + cos(3(x− rπ/6)) + cos(5(x− rπ/6))/3, and

cs(x) = (cos(x− sπ/6) + cos(3(x− sπ/6)) + cos(5(x− sπ/6))/3.

The C1 . . . C3 values for each point can be stored as supplementary image ma-

trices as they are produced. A corresponding energy matrix for each basis image

is constructed by computing the dominant orientation angle, inserting the C coeffi-

cients into the energy expression and then multiplying by the absolute value of the

steering coefficient for the basis function at the dominant angle. The unscaled energy

values are stored separately for use in thresholding the high-pass component of the

image.

At this point, there is a pointwise map of orientation energies scaled by the

local steering coefficient for each of six basis images, which are shown in Figure 4.4.

There is also a pointwise map of unscaled orientation energies for the high-pass image

component. The pointwise orientation energies are used to adjust the pixel amplitude

cij for each of these images as follows [22]:

ĉij =
cij

1 + e−S(
√

E(θ′)ij−T )
,

90



Chapter 5. Noise Reduction Using Local Orientation Analysis

where S is a constant determining the “sharpness” of the threshold curve, T is a

threshold value, and E(θ′)ij is the orientation energy at the dominant angle θ′. The

current work follows Simoncelli et al [22] in employing only one decomposition level

in the noise reduction algorithm. Nevertheless, it is certainly possible to use several

levels of analysis, with different sharpness and threshold constants for each one. For

pixel amplitudes scaled from 0 to 255, T = 14 for the basis images and T = 120 for

the high-pass image with S = 0.6 for both, gave the best results for the “lena” image.

Figure 5.8 shows the results of the noise reduction procedure for both hexagonal and

rectangular sampling together with amplitude scaled error images for both. The

noise signal lies within [-.25, .25] for full scale image amplitude of 1.

Figure 5.8: Hexagonal and square downsampled images with noise reduction.

The noise reduction procedure results in a SNR gain of 8.35 dB for the hexagonal

image and 8.40 dB for the rectangular image. The difference in performance is not

91



Chapter 5. Noise Reduction Using Local Orientation Analysis

significant, since the numbers given only approximate the optimum performances for

both sampling methods. Other experiments indicate that the performance of the

noise reduction algorithm is quite sensitive to sample density. Since the hexagonal

grid has a very slightly lower density, the results are consistent with this hypothetical

dependency. The other experiment compared the performance of noise reduction on

the filtered full resolution image with performance on the image filtered in the same

way but downsampled by a factor of four (a factor of two in each direction). The

noise reduction produced an improvement of 11.353 dB for the full resolution image

but only an improvement of 8.40 dB for the downsampled image, as reported in the

preceding. Figure 5.9 shows the full resolution filtered image with the noisy image

on the left and the noise reduced image on the right.

Figure 5.9: Full resolution image with noise reduction.

For the same noise level applied to the “cross” image, the hexagonal noise re-

duction produced 10.88 dB SNR gain and the rectangular produced 10.97 dB SNR

gain. For future reference, both the hexagonal and rectangular images saw the best

performance with T = 20 for low band and T = 120 for high band. Again, this result

92



Chapter 5. Noise Reduction Using Local Orientation Analysis

is consistent with the hypothesis that the noise reduction performance is determined

by sample density for unfiltered samples of the same image.

5.4 Conclusions

Filters derived for steerable pyramids with rectangular sampling may be accurately

recomputed for use in steerable pyramids with hexagonal sampling. Optimized fil-

ters generally perform well when resampled, although achieving comparable levels of

accuracy may require a larger hexagonal kernel. Direct computation of a hexagonal

kernel from a one-dimensional transfer function produces a very accurate filter. The

McClellan transformation produces a slightly less accurate filter in that filter accu-

racy does not improve indefinitely with kernel size. However, the McClellan trans-

formation generally produces a filter which achieves greater accuracy with smaller

kernels. Although it is generally expected that steerable pyramids reconstruct an im-

age with lower fidelity than pyramids using isotropic filters, oriented filters produced

by direct computation from general specifications may achieve superior performance.

This possibility arises from the ability of the direct computation to produce nearly

exact transfer function performance in the band pass filters except at zero frequency.

Since the angular frequency domain function forces the transfer function at zero

frequency to zero, a nearly perfect set of filters results.

A noise reduction technique using local orientation analysis offers an opportunity

to investigate the potential of hexagonal sampling in applications that can utilize its

advantage in angular resolution. The pyramid using hexagonal sampling produced

no improvement in noise reduction when compared to a pyramid using rectangu-

lar sampling for either an image with fine, curvilinear textures or for the simple

“cross” image. Experiments have indicated that performance of the noise reduction

algorithm depends mainly on sample density when other properties of the image

93



Chapter 5. Noise Reduction Using Local Orientation Analysis

representation are the same.

94



Chapter 6

Future Work

Kernel size affects performance of the pyramid and the number of levels for which

a pyramid can reconstruct the input image with acceptable accuracy. The size of a

kernel may be controlled by design, as with the McClellan transformation and op-

timization for a particular size, or by approximating a large kernel with a smaller

one. Tools for optimizing a filter kernel in terms of minimum error were not devel-

oped here, and may prove useful for future work. The Nelder-Mead simplex method

played a role in Simoncelli’s [22] work. Other methods, such as Genetic Algorithms

for optimization, neural nets or more recent optimization techniques might also be

considered. Simoncelli also used filtering methods to approximate an existing large

kernel with a much smaller one [21]. Such techniques may also prove useful. Alter-

natively, a standard functional form, such as that suggested by Castleman [4] may

provide adequate performance and save design time.

The relation between reconstruction accuracy and apparently relevant kernel pa-

rameters such as truncation area could guide filter design. Similarly, the relation

between the size of a two-dimensional kernel and the one-dimensional transfer func-

tion from which it is derived by direct computation would assist an implementor in

95



Chapter 6. Future Work

choosing a filter construction method. The coefficient matrix presented here repre-

sents a first step toward finding a useful estimator, but its interpretation presents

some challenges.

This thesis presents one application that fails to demonstrate improved perfor-

mance due to hexagonal sampling, but other existing applications of steerable pyra-

mids use approaches that might serve better. Application of wedge filters [21] could

exploit the higher angular resolution offered by the hexagonal sampling geometry.

It is also possible that certain applications may use the relatively high angular res-

olution of the hexagonal grid to reduce the number of samples necessary for a given

accuracy [14]. In particular, hexagonal sampling may improve the accuracy of the

McClellan transformation at high frequency.

Frequency domain filtering remains a strong contender for improving hexagonal

pyramid performance. The current performance of the HFFT serves adequately to

support filter kernel construction, but the HFFT is too slow to use for filtering in a

pyramid decomposition. There have been proposals to simulate [9] hexagonal FFT

processing using existing algorithms on the square grid. Whether this approach

offers adequate performance or merely relieves the user of the need to write a HFFT

algorithm is unclear. Triangular FFTs [18] also appear in the literature, and they

may provide the processing and performance required. These issues could be pursued

to the benefit of practical hexagonal pyramid applications.

The discovery of a technique to obtain extremely accurate steerable filters by

direct calculation opens up the possibility of facilitating pyramid design and imple-

mentation by eliminating the need for optimizing filters for pyramid constraints. If

the DC term for an arbitrary band-pass filter design can be pinned to 0 by its as-

sociated angular function, then constraints on the associated low-pass filters can be

greatly relaxed. The applicability of such a design technique should be explored.

96



Chapter 6. Future Work

Finally, noise reduction by local orientation analysis shows no detectable differ-

ence between hexagonal and rectangular sampling as implemented here. In fact,

the performance of the noise reduction application appears to depend solely on sam-

pling interval. Confirming this hypothesis would characterize the use of the steerable

standard shiftable pyramid for this application as giving an advantage to hexagonal

sampling because of the higher sampling density it offers for the same sample in-

terval. However, other oriented basis functions and interpolation formulations may

better utilize the higher angular resolution of the hexagonal grid. A careful analysis

of the problem may lead to a principled approach to solving it.

97



Appendices

98



Appendix A

Kernels

The following tables present tap values for the first nine hexagonal layers of each ker-

nel. The “circular” kernels are for the radial components of the circularly symmetric

filters. The “oriented” kernels are the radial components of terms of the oriented

kernels. The leftmost column in each table gives the square of the distance from the

center of the kernel for the given tap value.

No “oriented” kernels are shown for the transform method, since the kernels are

computed by multiplying the transfer function of the radial component of the band-

pass filter by the desired angular function and then computing the inverse hexagonal

Fourier Transform.

These taps are presented for cross referencing purposes, so that a worker trying

to reconstruct the results in this thesis can check results. Note that the direct

computation of the kernel produces an unnormalized result, which must be divided

by the sum of the L0 taps for a full hexagonal kernel. For comparison purposes, this

number is approximately 376.

The ten-tap filter from which the hexagonal L0 filter is derived has the following

99



Appendix A. Kernels

taps:



−0.01757626041722289

0.0467489166105036

−0.049848286796989286

−0.053268788466030156

0.5718377022941965

0.5718377022941965

−0.053268788466030156

−0.049848286796989286

0.0467489166105036

−0.01757626041722289


The taps for the standard shiftable pyramid filters were optimized for reconstruc-

tion accuracy of each angular function. The cos(θ) angular function worked well with

the radial filter components given for the circularly symmetric filters. The cos3(θ)

angular function required new kernels for all three radial components. It is possible

to give the radial components for the oriented band-pass filter kernels as calculated

by direct polar Fourier transform. However, for the resampling method that uses

the McClellan transformation, the radial component of the transfer function is mul-

tiplied by the angular function in the frequency domain, so that no radial kernels

exist. The oriented filter kernels would be difficult to present and can be easily

computed using the bp*gen.m functions from the appropriate circularly symmetric

kernel, as described at the end of Chapter 3. Therefore, neither the radial kernel

components nor the oriented kernels themselves are given here for kernels constructed

by resampling.

100



Appendix A. Kernels

Table A.1: Original Shiftable Direct Circular Kernels

R2 L0 L1 B
0 137.8886255 31.00541599 129.2357693
1 61.35397336 23.58748724 53.45227513
3 -3.817933263 13.35211076 -10.38321674
4 -12.72080177 9.919678291 -18.69370823
7 -8.035952411 3.816840276 -12.4964892
9 -0.642156328 1.882409299 -4.286554444
12 4.355983995 0.549107778 1.697462664
13 4.496116906 0.337719083 2.111335013
16 2.649711777 0.040782537 0.947847414
19 0.199051718 -0.021962258 -0.993627099
21 -0.848622613 -0.021816332 -1.779859222
25 -1.306328707 -0.005227499 -1.860993146
27 -1.016389782 0.000245443 -1.440865137
28 -0.820140491 0.001855374 -1.191237026
31 -0.22948191 0.003298863 -0.479277166
36 0.280533159 0.000918237 0.136258708
37 0.298249848 0.000404562 0.164641536
39 0.272851936 -0.0003927 0.153023779
43 0.096639398 -0.000991463 -0.018000442
48 -0.09360469 -0.000595913 -0.225921339
49 -0.111217094 -0.000472809 -0.248671459
52 -0.121829301 -0.000148621 -0.275828229
57 -0.048898084 9.09E-05 -0.229630075
61 0.021707646 4.27E-05 -0.176039177
63 0.04574618 -2.04E-05 -0.158436765
64 0.053838441 -5.49E-05 -0.152997738
67 0.062227218 -0.000152785 -0.150255503
73 0.027150229 -0.000254786 -0.186497553
75 0.009514661 -0.000256715 -0.20177158
76 0.001018275 -0.000252934 -0.20862705
79 -0.020391082 -0.00022836 -0.223447655
81 -0.029755461 -0.000205863 -0.227184019

101



Appendix A. Kernels

Table A.2: Original Shiftable Direct Oriented Kernels

R2 BP1 BP2 BP3 BP4 BP5

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 66.6207 34.5022 11.5599 3.2494 0.7209
3 38.1800 49.3202 33.9172 17.7836 7.2690
4 21.7557 44.0583 38.7684 24.4823 11.9473
7 -3.6970 19.4646 34.7003 33.7886 24.3831
9 -6.0024 7.8850 25.4167 31.9882 28.4777
12 -2.1198 0.8464 12.7603 23.7694 28.0983
13 -0.6327 0.3872 9.7392 20.7115 26.7417
16 2.1002 1.4061 4.4507 12.8965 21.0502
19 2.2147 2.9658 3.1998 8.1656 15.2478
21 1.4929 3.4278 3.4416 6.5678 12.1655
25 -0.1204 2.9315 4.3143 5.5775 8.3567
27 -0.6077 2.3088 4.4789 5.5479 7.4196
28 -0.7461 1.9811 4.4622 5.5499 7.1169
31 -0.8047 1.1131 4.0710 5.4504 6.6123
36 -0.2871 0.3954 2.8383 4.7295 6.1860
37 -0.1711 0.3568 2.5859 4.5247 6.0810
39 0.0275 0.3501 2.1255 4.0955 5.8272
43 0.2406 0.4815 1.4536 3.2844 5.1730
48 0.2169 0.6273 1.0708 2.5629 4.2805
49 0.1922 0.6370 1.0386 2.4627 4.1159
52 0.1118 0.6263 0.9928 2.2329 3.6763
57 0.0229 0.5267 0.9859 1.9990 3.1389
61 0.0140 0.4404 0.9713 1.8565 2.8500
63 0.0238 0.4091 0.9535 1.7839 2.7342
64 0.0304 0.3973 0.9421 1.7465 2.6806
67 0.0510 0.3769 0.9008 1.6298 2.5297
73 0.0633 0.3809 0.8079 1.3983 2.2398
75 0.0545 0.3858 0.7800 1.3301 2.1438
76 0.0479 0.3876 0.7672 1.2987 2.0963
79 0.0211 0.3874 0.7335 1.2166 1.9580
81 -0.0004 0.3815 0.7148 1.1724 1.8711

102



Appendix A. Kernels

Table A.3: Original Shiftable Transformed Circular Kernels

R2 L0 L1 B
0 0.324539969 0.070686767 0.304847247
1 0.159446048 0.055769289 0.141400139
3 0.004237372 0.034212288 -0.011139902
4 -0.022155663 0.026588062 -0.036389798
7 -0.025582225 0.01200288 -0.036791281
9 -0.008480156 0.006819747 -0.017959787
12 0.005704708 0.002662216 -0.00154613
13 0.008684916 0.001918155 0.002065473
16 0.00870509 0.000637031 0.003711746
19 0.004362993 0.000117333 0.000627754
21 0.001042206 2.72E-05 -0.002027151
25 -0.002428717 -1.49E-05 -0.00447099
27 -0.002269839 -3.24E-05 -0.003922463
28 -0.002392493 -2.13E-05 -0.003880601
31 -0.001741096 -1.80E-06 -0.002809122
36 -0.000124567 5.29E-06 -0.000727821
37 -0.000256511 -1.36E-06 -0.000799432
39 0.000187517 1.24E-06 -0.000257154
43 0.000400273 1.66E-06 8.49E-05
48 0.000148062 -5.50E-06 -0.000110494
49 7.01E-05 -2.22E-06 -0.000191757
52 -7.58E-05 -6.15E-07 -0.000347847
57 -0.00019969 1.32E-06 -0.00051155
61 -6.87E-05 -4.26E-06 -0.000416628
63 -5.40E-05 -1.12E-06 -0.000426282
64 -1.20E-05 1.62E-06 -0.000395847
67 2.87E-05 1.21E-06 -0.000378831
73 0.000110756 1.25E-06 -0.000341661
75 2.73E-05 -4.26E-06 -0.000432289
76 3.75E-05 -2.58E-06 -0.000430324
79 3.77E-05 1.19E-07 -0.000439618
81 2.22E-05 7.76E-07 -0.000460757

103



Appendix A. Kernels

Table A.4: Standard Shiftable Analytical Kernels

R2 L00 L03 L10 L13 BP BP11 BP13 BP3

0 52.349 75.487 100.487 145.594 350.347 0.000 0.000 0.000
1 43.360 59.328 50.233 59.259 -7.702 110.880 87.958 26.570
3 29.942 37.116 5.671 -6.364 -6.315 14.003 15.493 58.386
4 24.777 29.021 -1.749 -12.955 -8.971 -8.848 -6.479 55.904
7 13.263 11.532 -3.872 -4.886 -8.918 -4.126 -12.869 23.015
9 8.019 3.917 -1.500 1.323 -4.659 7.889 -2.051 5.974
12 2.762 -2.983 0.374 3.466 -0.408 7.158 4.577 -0.812
13 1.554 -4.321 0.509 2.966 -0.107 3.781 3.794 0.190
16 -0.872 -6.283 0.248 0.653 -1.366 -5.562 -2.100 5.365
19 -2.008 -6.247 -0.128 -0.787 -3.013 -7.129 -6.325 7.450
21 -2.299 -5.643 -0.218 -0.976 -3.204 -4.440 -6.448 6.196
25 -2.212 -3.900 -0.104 -0.381 -1.460 2.060 -2.380 0.756
27 -1.976 -2.971 -0.008 -0.019 -0.216 3.406 0.037 -1.648
28 -1.832 -2.519 0.031 0.121 0.338 3.439 1.029 -2.516
31 -1.358 -1.258 0.094 0.327 1.384 1.579 2.685 -3.576
36 -0.624 0.380 0.047 0.153 0.924 -2.980 1.583 -1.647
37 -0.504 0.626 0.028 0.091 0.626 -3.466 1.076 -1.066
39 -0.301 1.030 -0.006 -0.021 -0.005 -3.760 0.074 -0.008
43 -0.033 1.501 -0.043 -0.139 -0.919 -2.031 -1.205 1.139
48 0.091 1.554 -0.029 -0.090 -0.836 1.481 -0.915 0.613
49 0.098 1.512 -0.022 -0.067 -0.682 1.986 -0.679 0.354
52 0.097 1.315 0.000 0.001 -0.107 2.717 0.129 -0.459
57 0.072 0.871 0.020 0.062 0.684 1.450 1.100 -1.269
61 0.054 0.515 0.017 0.053 0.780 -0.602 1.134 -1.134
63 0.048 0.356 0.012 0.037 0.643 -1.500 0.929 -0.864
64 0.045 0.283 0.009 0.028 0.539 -1.856 0.789 -0.699
67 0.037 0.093 0.000 0.001 0.150 -2.436 0.302 -0.169
73 0.008 -0.164 -0.009 -0.026 -0.539 -1.420 -0.465 0.560
75 -0.006 -0.218 -0.009 -0.026 -0.635 -0.670 -0.551 0.615
76 -0.014 -0.239 -0.008 -0.024 -0.651 -0.274 -0.558 0.606
79 -0.040 -0.284 -0.005 -0.016 -0.577 0.849 -0.446 0.453
81 -0.056 -0.299 -0.003 -0.009 -0.442 1.435 -0.287 0.275

104



Appendix A. Kernels

Table A.5: Standard Shiftable Transformed Kernels

R2 L00 L03 L10 L13

0 0.1213157 0.1796283 0.2383174 0.3534528
1 0.0999520 0.1362319 0.1261013 0.1524986
3 0.0740147 0.0949167 0.0235620 -0.0023668
4 0.0629760 0.0771331 0.0034145 -0.0237738
7 0.0373466 0.0368004 -0.0102020 -0.0189615
9 0.0252474 0.0186835 -0.0053700 -0.0021689
12 0.0124729 0.0010434 -0.0010006 0.0063571
13 0.0093152 -0.0028904 0.0002571 0.0075307
16 0.0022260 -0.0106809 0.0007705 0.0041937
19 -0.0021600 -0.0140476 0.0002413 0.0007078
21 -0.0038499 -0.0144258 -0.0003674 -0.0015822
25 -0.0052881 -0.0126307 -0.0004778 -0.0018232
27 -0.0052736 -0.0109188 -0.0002258 -0.0010511
28 -0.0051588 -0.0100081 -0.0001674 -0.0007536
31 -0.0044896 -0.0071132 0.0001474 0.0003836
36 -0.0029213 -0.0027010 0.0002768 0.0008406
37 -0.0026741 -0.0021331 0.0001175 0.0004069
39 -0.0020883 -0.0007630 0.0001213 0.0003921
43 -0.0011354 0.0012899 -0.0000589 -0.0001630
48 -0.0004711 0.0027398 -0.0000612 -0.0001715
49 -0.0003409 0.0029203 -0.0001064 -0.0003131
52 -0.0001060 0.0032678 -0.0000828 -0.0002531
57 0.0001028 0.0032639 0.0000195 0.0000517
61 0.0001913 0.0028823 0.0000294 0.0000840
63 0.0002108 0.0026041 0.0000481 0.0001342
64 0.0002066 0.0025059 0.0001129 0.0003223
67 0.0002199 0.0019643 0.0000622 0.0001770
73 0.0001870 0.0009406 -0.0000013 -0.0000014
75 0.0001371 0.0005725 -0.0000183 -0.0000415
76 0.0001239 0.0004373 -0.0000166 -0.0000431
79 0.0000794 0.0000741 -0.0000279 -0.0000817
81 0.0000604 -0.0001695 -0.0000755 -0.0002109

105



Appendix B

Matlab/Octave Filter Code

The Matlab program and Octave, its open source alternative, are well-suited to com-

puting with matrices and vectors. Additionally, Octave provides signal processing

tools such as the Fast Fourier Transform (FFT). The scripting language is almost

identical between Matlab and Octave, so that a script written for one should run

with few changes under the other. Work for this thesis used Octave almost exclu-

sively, since the available student version of Matlab contains no signal processing

tools without the separately purchased signal processing toolbox.

Construction of filters needs to be done relatively rarely, so that processing speed

is not a major consideration for most tasks. Moreover, filter construction requires

matrix manipulation and the FFT, depending on the method used. Since Octave

handles matrix and vector tasks easily, all of the filter construction tasks are im-

plemented in its scripting language. This section presents the tools necessary to

construct filters by the methods described in this thesis.

In this work, a filter is constructed from a one-dimensional transfer function. For

the original shiftable pyramid, where transfer function specifications are available,

explicit transfer functions are generated with Octave from the specifications. Where

106



Appendix B. Matlab/Octave Filter Code

only rectangular filter kernels are available, as for the standard shiftable pyramid,

Octave is used to generate the two-dimensional Fourier transform, which is the two-

dimensional transfer function that it is desired to resample. For each filter used in

the standard shiftable pyramid, the one-dimensional transfer function is obtained as

the cross section of the two-dimensional transfer function through its center.

Once a one-dimensional transfer function is obtained, either the direct inverse

polar Fourier transform or the McClellan transformation followed by an inverse

hexagonal Fourier transform (HFFT) may be used to produce a two-dimensional

filter kernel sampled on the hexagonal grid. In the first case, where the inverse

polar Fourier transform method is used, the result is also one-dimensional but cir-

cularly symmetric. To produce a two-dimensional hexagonally sampled kernel, the

procedure is to compute the distance from the center of each kernel point and then

compute the inverse polar Fourier transform at this distance. Of course, the ac-

tual algorithm avoids repeating computations by computing the kernel values for

all required distances before they are placed into the kernel. In the second case,

the McClellan transformation converts the one-dimensional transfer function into

a circularly-symmetric two-dimensional transfer function sampled on the hexagonal

grid. The inverse HFFT converts the hexagonal transfer function into the corre-

sponding hexagonal filter kernel.

B.1 Octave Code for Inverse Polar FT

The routines presented in the following implement or analyze this process. The first

listing presents the inverse polar Fourier transform. This function takes a 512-point

transfer function as input and returns a n × n matrix containing the values of the

kernel at the distance from the kernel center computed as rs(i, j) in the routine.

These distances are based on the hexagonal grid, and the values in the matrix are to

107



Appendix B. Matlab/Octave Filter Code

be interpreted as corresponding to these distances. The pyramid routines are set up

to read the output of radialb in this format.

As discussed in Chapter 3, the computation of an oriented kernel requires mul-

tiplying the kth order kernel for the kth term of the Fourier series of the angular

function by cos(kθ) and the Fourier series coefficient. To obtain the kth order ker-

nel, set the third argument equal to k and save the resulting matrix out to a file the

the pyramid software knows how to read. All of the band-pass kernel matrices are

written out to a file named with the same prefix, such as “t”. The order k should be

appended to this file name so that the software reads it automatically.

function [y,rs] = radialb(ampl,n,ord)

rs = zeros(n,n);

taps = zeros(1,2*n*n);

y = rs;

for i=1:n

for j=1:n

x = mod(i-1,2)*0.5 + (j-1);

x2 = x*x;

y2 = 0.75*(i-1)*(i-1);

rs(i,j) = x2+y2

end

end

for i=1:n

for j=1:n

freq = sqrt(rs(i,j));

if (taps(rs(i,j)+1) == 0)

bes = besselj(ord,[0:511]/512 * freq * pi);

rx = ampl .* [0:511]/512;

108



Appendix B. Matlab/Octave Filter Code

y(i,j) = rx * bes’;

taps(rs(i,j)+1) = y(i,j);

else

y(i,j) = taps(rs(i,j)+1);

end

end

end

end;

B.2 Kernel Size Estimation

The next listing presents a function that computes a matrix giving the extent to

which the output of the radialb function depends on each entry of the input kernel.

This information can be used to roughly predict the size of the output kernel given

the size of the input kernel.

function y = radspread(order,N)

y = zeros(N);

for nu=1:N

bes = besselj(order,[0:511]/512 * (nu-1) * pi);

for n=1:N

ampl = cos([0:511]/512 * (n-1) * pi);

if n > 1

ampl *= 2;

end

rx = ampl .* [0:511]/512;

y(nu,n) = rx * bes’;

end

109



Appendix B. Matlab/Octave Filter Code

end

y /= 64;

B.3 McClellan Transformation Scripts

The following two routines fqt and ftrans together implement the McClellan trans-

formation. The ftrans routine computes the location of each point on a hexago-

nal grid, and then it calls fqt with the location coordinates and the input one-

dimensional transfer function. The fqt function returns the transformed value of

the transfer function for the requested point, and ftrans places the value into the

output array representing the new hexagonal transfer function. The computation of

the point location by ftrans results in the construction of a hexagonal fundamental

period as described in Chapter 3.

function hy = fqt(w,x,y);

N = length(w);

sqt = sqrt(3);

x = x/2;

y = y/2;

hy = w(N);

h = -1/3+4/9*(cos(2*y/sqt)+cos(y/sqt+x)+cos(y/sqt-x));

r = acos(h)/pi*N*4/3+1;

ir = floor(r);

if ir < N

dr = r-ir;

dw = w(ir+1)-w(ir);

hy = w(ir)+dw*dr;

end

110



Appendix B. Matlab/Octave Filter Code

function hy = ftrans(w,N)

hy = zeros(N,3*N);

sqt = sqrt(3);

n = length(w);

hx = ones(N,3*N)*w(n);

for j=1:N

for i=1:N

x = (i-N)*pi/N*2;

y = (2*(j-N)/sqt-(i-N)/sqt)*pi/N*2;

if x*x + y*y <= 5.5*pi*pi

hx(i,j) = fqt(w,x,y);

end

end

end

for j=N+1:2*N

for i=1:N

x = (i-N)*pi/N*2;

y = (2*(j-N)/sqt-(i-N)/sqt)*pi/N*2;

if x*x + y*y <= 5.5*pi*pi

hx(i,j) = fqt(w,x,y);

end

end

end

for j=N+1:2*N

for i=1:N

x = (i-1)*pi/N*2;

y = (2*(j-2*N)/sqt-i/sqt+0.5/sqt)*pi/N*2;

111



Appendix B. Matlab/Octave Filter Code

if y >= i/sqt-2*N/sqt-1/sqt && x*x + y*y <= 5.5*pi*pi

hx(i,j) = fqt(w,x,y);

end

end

end

for j=2*N+1:3*N

for i=1:N

x = i*pi/N*2;

y = (2*(j-2*N+0.5)/sqt-i/sqt)*pi/N*2;

f x*x + y*y <= 5.5*pi*pi

hx(i,j) = fqt(w,x,y);

end

end

end

hy = ampl(shift(hx’,N)’);

B.4 HFFT Implementation

The following routines hdft, rhfft, and hfft implement the Hexagonal Fast Fourier

Transform (HFFT) as described by Mersereau [14]. The hdft function computes the

Hexagonal Discrete Fourier Transform (HDFT) as a sum, but it is extremely slow.

The rhfft function implements the recursive HFFT, constructing each stage of the

HFFT from HFFTs of one-quarter the size. It calls the hdft function when the size

of the input is a 2× 6 matrix. The top-level hfft sets up the top-level one-quarter

matrices and calls rhfft to begin the recursion.

function y = hdft(x,N,d)

[n,m] = size(x);

112



Appendix B. Matlab/Octave Filter Code

y = zeros(N,3*N);

for k1 = 0:3*N-1

for k2 = 0:N-1

for ni=0:n-1

for nj=0:m-1

w = d*pi*((2*nj-ni)*(2*k1-k2)/3/N + ni*k2/N);

y(k2+1,k1+1) = y(k2+1,k1+1) + x(ni+1,nj+1)*exp(-i*w);

end

end

end

end

function y = rhfft(x,N,d,wg,wh,wi)

[n,m] = size(x);

y = zeros(N,3*N);

N2 = N/2;

sf = zeros(N2, 3*N2);

sg = zeros(N2, 3*N2);

sh = zeros(N2, 3*N2);

si = zeros(N2, 3*N2);

wg2 = wg(1:2:N,1:2:3*N);

wh2 = wh(1:2:N,1:2:3*N);

wi2 = wi(1:2:N,1:2:3*N);

wgh = wg(1:N/2,1:3*N/2);

whh = wh(1:N/2,1:3*N/2);

wih = wi(1:N/2,1:3*N/2);

if N < 4

sf = hdft(x(1:2:n,1:2:m),N/2,d);

113



Appendix B. Matlab/Octave Filter Code

sg = wgh .* hdft(x(2:2:n,1:2:m),N/2,d);

sh = whh .* hdft(x(1:2:n,2:2:m),N/2,d);

si = wih .* hdft(x(2:2:n,2:2:m),N/2,d);

else

sf = rhfft(x(1:2:n,1:2:m),N/2,d,wg2,wh2,wi2);

sg = wgh .* rhfft(x(2:2:n,1:2:m),N/2,d,wg2,wh2,wi2);

sh = whh .* rhfft(x(1:2:n,2:2:m),N/2,d,wg2,wh2,wi2);

si = wih .* rhfft(x(2:2:n,2:2:m),N/2,d,wg2,wh2,wi2);

end

y(1:N/2,1:3*N/2) = sf + sg + sh + si;

y(1:N/2,1+3*N/2:3*N) = sf - sg + sh - si;

y(N/2+1:N,N+1:5*N/2) = sf + sg - sh - si;

s5 = sf - sg - sh + si;

y(N/2+1:N,5*N/2+1:3*N) = s5(1:N/2,1:N/2);

y(N/2+1:N,1:N) = s5(1:N/2,N/2+1:3*N/2);

function y = hfft(x,N,d)

wg = exp(i*2*d*pi/3/N*[0:3*N-1]);

wg = exp(-i*4*d*pi/3/N*[0:N-1]’)*wg;

wh = exp(-i*4*d*pi/3/N*[0:3*N-1]);

wh = exp(i*2*d*pi/3/N*[0:N-1]’)*wh;

wi = exp(-i*2*d*pi/3/N*[0:3*N-1]);

wi = exp(-i*2*d*pi/3/N*[0:N-1]’)*wi;

y = rhfft(x,N,d,wg,wh,wi);

114



Appendix B. Matlab/Octave Filter Code

B.5 Formatting a Hexagonal Fundamental Period

In order to process a kernel with the HFFT, it is necessary to reformat it from its

representation as a square matrix and embed it into a N × 3N matrix, where N

is the size of the desired transform. The rehex does this using the ihfftshift

to position the kernel correctly. For inverse transforms, the transfer function is

generated so that it already forms a correct hexagonal fundamental period. However,

the kernel resulting from the inverse HFFT must be extracted and reformatted from

its hexagonal fundamental period in order to be used by the pyramid software. The

unhex and hfftshift routines support these operations. At a higher level, the

l*gen.m and bp*gen.m routines illustrate the usage of the preceding functions in

generating low-pass and band-pass kernels. The rather trivial ampl function returns

the amplitude of a complex number.

function y = hfftshift(A)

[n,m] = size(A);

al = shift(A(1:n/2,:)’,2*n)’;

B = [al; A(n/2+1:n,:)];

y = shift(B,n/2);

function y = ihfftshift(A)

[n,m] = size(A);

y1 = shift(A’,n/2)’;

B = shift(y1,-n/2);

al = B(1:n/2,:);

z = B(n/2+1:n,:);

z1 = shift(al’,-2*n)’;

y = [z1; z];

115



Appendix B. Matlab/Octave Filter Code

function hx = rehex(A,N)

[n,m] = size(A);

hy = zeros(N,3*N);

c = floor(n/2);

hy(N/2-c+1:N/2+c+1,3*N/2-c+1:3*N/2+c+1) = A;

for i=1:n/2

hy(N/2+i+1,:) = shift(hy(N/2+i+1,:),floor((i+1)/2));

hy(N/2-i+1,:) = shift(hy(N/2-i+1,:),-floor(i/2));

end

hx = ihfftshift(hy);

function hy = unhex(A)

[n,m] = size(A);

cA = hfftshift(A);

ccA = cA(:,2*n-n/2+1:2*n+n/2);

hy = zeros(n);

for i=1:n

for j=1:n

y = j + floor(i/2);

if (y < n)

hy(i,j) =ccA(i,y);

end

end

end

function y = ampl(A)

y = sqrt(A .* conj(A));

116



Appendix B. Matlab/Octave Filter Code

function y = l1gen(kernel,N,m)

h1 = fft2(kernel,1024,1024);

hx1 = ftrans(ampl(h1(1,1:512)),N);

b1 = hfft(hx1,N,-1)/N/N/3;

ub1 = unhex(real(b1));

midx = N/2+1;

midy = N/4+1;

y = ub1(midx-m:midx+m,midy-m:midy+m);

function y = bpgen(kernel,N,m)

hb = fft2(kernel,2048,2048);

cb = 1-ampl(hb);

cxb = ftrans(cb(1,1:1024),N);

bb = hfft(1-cxb,N,-1)/N/N/3;

ubb = unhex(real(bb));

midx = N/2+1;

midy = N/4+1;

y = ubb(midx-m:midx+m,midy-m:midy+m);

B.6 Oriented Filter Kernels

To generate oriented kernels, it is necessary to follow the procedure for the inverse

polar Fourier transform method, which multiplies the terms corresponding to the

Fourier series of the angular function by the appropriate Fourier basis function, or

to multiply the two-dimensional hexagonal transfer function by the angular function

in the frequency domain and then perform the inverse HFFT. The routines listed in

117



Appendix B. Matlab/Octave Filter Code

the following support the latter procedure, since the inverse polar Fourier transform

is supported by radialb as described in the preceding.

The coshex0 and sinhex0 routines multiply the radial component of the two-

dimensional transfer function by cos(θ) or sin(θ), respectively to produce the first

order derivative oriented transfer functions. Only the coshex0 function is shown

here, since the sinhex0 function differs from it only in the multiplying function

and both are rather lengthy. The coshex3 similarly generates the requested basis

transfer functions for the third order derivative oriented filter. The cos3 function

supports coshex3 with a fast cos3(θ) calculation. The high level bp*gen functions

automate construction of the oriented filters and serve to illustrate the usage of the

preceding. To use the bp*gen load in the appropriate rectangular band-pass kernel.

The standard shiftable pyramid uses a different set of filters for each angular function,

so that not only the band-pass kernels but the low-pass kernels must be switched out

when changing the order of the steerable filter. Only orders 0, 1, and 3 are supported

by the standard shiftable pyramid.

function SR = coshex0(B)

[N,M] = size(B);

A = shift(B’,-N)’;

rcenter = 1;

ccenter = 1;

R = zeros(N,M);

sqt = sqrt(3.0);

for j=1:N

for i=1:N

x = sqt*(i-N)/2;

y = j-i/2-N/2;

r = sqrt(x*x+y*y);

118



Appendix B. Matlab/Octave Filter Code

if r != 0.0

R(i,j) = A(i,j)*y/r;

end

end

end

for j=N+1:2*N

for i=1:N

x = sqt*(i-N)/2;

y = j-i/2-N/2;

r = sqrt(x*x+y*y);

if r != 0.0

R(i,j) = A(i,j)*y/r;

end

end

end

for j=N+1:2*N

for i=1:N

x = sqt*i/2;

y = j-i/2-2*N+0.5;

r = sqrt(x*x+y*y);

if y >= i/2-N-0.5 && r != 0

R(i,j) = A(i,j)*y/r;

end

end

end

for j=2*N+1:3*N

for i=1:N

x = sqt*i/2;

119



Appendix B. Matlab/Octave Filter Code

y = j-i/2+0.5-2*N;

r = sqrt(x*x+y*y);

if r != 0.0

R(i,j) = A(i,j)*y/r;

end

end

end

SR = shift(R’,N)’;

function z = cos3(x,y,r,cosoff,sinoff)

cos1 = x/r;

sin1 = y/r;

coff = cos1*cosoff+sin1*sinoff;

z = coff*coff*coff;

function SR = coshex3(B,k)

[N,M] = size(B);

off = k*pi/4;

cosoff = cos(off);

sinoff = sin(off);

A = shift(B’,-N)’;

rcenter = 1;

ccenter = 1;

R = zeros(N,M);

sqt = sqrt(3.0);

for j=1:N

for i=1:N

x = sqt*(i-N)/2;

120



Appendix B. Matlab/Octave Filter Code

y = j-i/2-N/2;

r = sqrt(x*x+y*y);

if r != 0.0

R(i,j) = A(i,j)*cos3(y,x,r,cosoff,sinoff);

end

end

end

for j=N+1:2*N

for i=1:N

x = sqt*(i-N)/2;

y = j-i/2-N/2;

r = sqrt(x*x+y*y);

if r != 0.0

R(i,j) = A(i,j)*cos3(y,x,r,cosoff,sinoff);

end

end

end

for j=N+1:2*N

for i=1:N

x = sqt*i/2;

y = j-i/2-2*N+0.5;

r = sqrt(x*x+y*y);

if y >= i/2-N-0.5 && r != 0

R(i,j) = A(i,j)*cos3(y,x,r,cosoff,sinoff);

end

end

end

for j=2*N+1:3*N

121



Appendix B. Matlab/Octave Filter Code

for i=1:N

x = sqt*i/2;

y = j-i/2+0.5-2*N;

r = sqrt(x*x+y*y);

if r != 0.0

R(i,j) = A(i,j)*cos3(y,x,r,cosoff,sinoff);

end

end

end

SR = shift(R’,N)’;

function y = bp0gen(kernel,N,m)

hb = fft2(kernel,2048,2048);

hxb = ftrans(ampl(hb(1,1:1024)),N);

chxb = coshex0(hxb);

cbb = hfft(chxb,N,-1)/N/N/3;

cubb = unhex(imag(cbb));

midx = N/2+1;

midy = N/4+1;

y = cubb(midx-m:midx+m,midy-m:midy+m);

function y = bp3gen(kernel,N,m,k)

hb = fft2(kernel,2048,2048);

hxb = ftrans(ampl(hb(1,1:1024)),N);

chxb = coshex3(hxb,k);

cbb = hfft(chxb,N,-1)/N/N/3;

cubb = unhex(imag(cbb));

midx = N/2+1;

122



Appendix B. Matlab/Octave Filter Code

midy = N/4+1;

y = cubb(midx-m:midx+m,midy-m:midy+m);

B.7 Kernel Refinement

The radialize function produces a kernel that is circularly symmetric from one

that is nearly so. Kernel values at a given distance from center are averaged and the

result written to all the entries at that distance. The hexagonalize routine returns

a kernel for which all kernel positions outside the specified distance from the center

are set to zero.

function y = radialize(A)

[n,n] = size(A);

mid = (n+1)/2;

rs = zeros(n);

taps = zeros(1,2*n*n);

count = zeros(1,2*n*n);

y = rs;

for i=1:n

for j=1:n

x = mod(abs(i-mid),2)*0.5 + j-mid;

x2 = x*x;

y2 = 0.75*(i-mid)*(i-mid);

rs(i,j) = x2+y2;

end

end

for i=1:n

for j=1:n

123



Appendix B. Matlab/Octave Filter Code

if (rs(i,j) != 0)

taps(rs(i,j)) = (taps(rs(i,j))*count(rs(i,j)) +

A(i,j))/(count(rs(i,j))+1);

count(rs(i,j)) += 1;

end

end

end;

for i=1:n

for j=1:n

if (rs(i,j) == 0)

y(i,j) = A(mid,mid);

else

y(i,j) = taps(rs(i,j));

end

end

end;

function y = hexagonalize(A)

[n,n] = size(A);

layers = (n-1)/2;

mid = layers+1;

y=A;

for i=1:layers

for j=1:floor(i/2)

y(mid+i,j)=0.0;

y(mid-i,j)=0.0;

end

for j=n-floor((i-1)/2):n

124



Appendix B. Matlab/Octave Filter Code

y(mid+i,j)=0.0;

y(mid-i,j)=0.0;

end

end

B.8 Accuracy Measurement

The qual routine reads the original and reconstructed images written out to files

by the pyramid program. It computes the maximum difference, the mean square

difference, and the difference image from the two images. The qual computes these

figures for the center one quarter of the image, assuming a square image and given

one dimension as input. The oqual routine computes the same results for the entire

image. For the test images, which have a black border of one quarter the image

dimension, the qual routine provides measurement of the best possible reconstruc-

tion accuracy that eliminates almost all edge effects. The oqual routine provides a

measurement of how edge effects grow with pyramid depth.

function [y,var,logvar,d] = qual(N)

load p1.mat p1;

load p0.mat p0;

d = p1-p0;

em = N/2-N/4;

ep = N/2+N/4;

ds = d(em:ep,em:ep);

y = max(max(abs(ds)));

var = sum(sum(ds .* ds))/N/N*4;

logvar = 10*log10(var);

125



Appendix B. Matlab/Octave Filter Code

function [y,var,logvar,d] = oqual(N)

load p1.mat p1;

load p0.mat p0;

d = p1-p0;

y = max(max(abs(d)));

var = sum(sum(d .* d))/N/N;

logvar = 10*log10(var);

B.9 Miscellaneous Matlab/Octave Routines

The resample function resamples an input function by linear interpolation so that its

values at the specified number of points, spaced uniformly, are returned as a vector.

This routine is used mainly to display a transfer function computed by HFFT of

hexagonal kernels with the original desired transfer function.

function y = resample(h,N)

n = length(h);

for i=0:N-1

y(i+1) = linterp(h,(i/N)*(n-1)+1);

end

126



References

[1] E.H. Adelson, C.H. Anderson, J.R. Bergen, P.J. Burt, and J.M. Ogden, Pyramid
Methods in Image Processing, RCA Engineer 29 (1984), no. 6, 33–41.

[2] Anonymous author, Parks-McClellan Filter Design, 2005, Available online at
http://www.dsptutor.freeuk.com/remez/RemezFIRFilterDesign.html.

[3] Ronald N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill
Book Company, 1978.

[4] K. R. Castleman, M. Schulze, and Q. Wu, Simplified Design of Steerable Pyramid
Filters, Proceedings - IEEE International Symposium on Circuits and Systems,
vol. 67, 1979, pp. 930–949.

[5] Kenneth R. Castleman, Digital image processing, Prentice Hall, Inc., 1996.

[6] Zoran Cvetkovic and Martin Vetterli, Oversampled Filter Banks, IEEE Trans-
actions on Signal Processing 46 (1998), no. 5, 1245–1255.

[7] William T. Freeman and Edward H. Adelson, The Design and Use of Steer-
able Filters, IEEE Transactions on Pattern Analysis and Machine Intelligence
9 (1991), 891–906.

[8] Branko Grunbaum and G. C. Shephard, Tilings and Patterns, W. H. Freeman
and Company, 1987.

[9] Innchyn Her, Chin-Chung Huang, and Rong-Da Hsieh, A Simulated Fast Hexag-
onal Fourier Transform, IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E870A (2004), no. 7, 1804–1809.

[10] Anestis Karasaridis and Eero Simoncelli, A Filter Design Technique for Steerable
Pyramid Image Transforms, Proceedings of the ICASSP-96, 1996, pp. 2387–
2390.

127



References

[11] H. Knutsson and G.H. Granlund, Texture Analysis using Two-dimensional
Quadrature Filters, IEEE Computer Society Workshop on Computer Architec-
tures for Pattern Analysis and Image Database Management, 1983, pp. 206–213.

[12] Jae S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall, 1990.

[13] Wu-Sheng Lu and Andreas Antoniou, Two-Dimensional Digital Filters, Marcel
Dekker, Inc., 1992.

[14] Russell M. Mersereau, The Processing of Hexagonally Sampled Two-
Dimensional Signals, Proceedings of the IEEE, vol. 5, 1978, pp. 329–332.

[15] Lee Middleton and Jayanthi Sivaswamy, Framework for Practical Hexagonal-
Image Processing, Journal of Electronic Imaging 11 (2002), no. 1, 104–114.

[16] T. W. Parks and C. S. Burrus, Digital Filter Design, John Wiley and Sons, Inc.,
1987.

[17] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling, Numerical Recipes (FORTRAN Version), Cambridge University Press,
1989.

[18] Markus Puschel and Martin Rotteler, Cooley-Tukey FFT like Algorithm for the
Discrete Triangle Transform, 2004 IEEE 11th Digital Signal Processing Work-
shop, 2004, pp. 158–162.

[19] G.E. Rivard, Direct Fast Fourier Transform of Bivariate Functions, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing ASSP-25 (1977), no. 3,
250–252.

[20] Eero P. Simoncelli, C source code, 2006, Available online at
http://www.cns.nyu.edu/pub/eero/steerpyr.tar.gz.

[21] Eero P. Simoncelli and Hany Farid, Steerable Wedge Filters for Local Orientation
Analysis, IEEE Transactions on Image Processing 5 (1996), no. 9, 1377–1382.

[22] Eero P. Simoncelli, William T. Freeman, Edward H. Adelson, and David J.
Heeger, Shiftable Multiscale Transforms, IEEE Transactions on Information
Theory 38 (1992), no. 2, 587–607.

[23] Elias M. Stein and Guido Weiss, Introduction to Fourier Analysis on Euclidean
Spaces, Princeton University Press, 1971.

[24] John Woods (ed.), Subband Coding, Kluwer Academic Press, 1990.

128


